
Developing Collaborative Games Using L a rry Chen
Active Objects Simplifying the control flow & Todd Busby 8

JDJ Feature : Java Security: Beyond Code Safety Jahan More h
Practical uses of the crytographic interfaces of JDK 1.1 2 2

JDJ Feature : Writing Unix Filters in Java Kenneth Kranz
Using Java in place of the more traditional languages 3 6

F rom the Ground Up: P o l y m o r p h i s m John Ta b b o n e
An object’s ability to identify with a parent class 1 6

Implementing Assertions in Java John Hunt & Fred Long
A valuable mechanism in larg e r, critical applications 5 2

CO R B AC o rn e r : CORBA Beans J e ff Nelson
A distributed component model with cross language intero p e r a b i l i t y 6 0

Visual Café: POP goes the Serv e r Alan Wi l l i a m s o n
Basic functionality needed to implement a POP3 client 6 4

W h a t ’s All the Fuss About? Clive Boustre d
What do Java’s components really deliver? 7 6

What is a Java
Application Server?

Scott Dietzen pg. 5

Making Enterprise
Java a Reality
Tina Lorentz pg. 7

Under the Sun
JavaBean

Component Reuse
pg.46

Product Reviews
InstallShield Express 2

by Jason Cohen pg.48

CodeBase 6
by David Jung pg.58

Vi s i B roker 3.0
by Khanderao Kand pg.72

The Grind
The Brass Ring

by Joe S. Valley pg.90

JDJ Forum Update
Welcome to the

JDJ Foru m
by Ashok Ramachandran pg.86

Java & Business
Wrangling Big Iro n
by Eric Lehrfeld pg.32

Volume:2 Issue:12JavaDevelopersJournal.com

JAVA A P P LIC AT I ON S E RV E RJAVA A P P LIC AT I ON S E RV E RJAVA A P P LIC AT I ON S E RV E R THE BAR
TM

U.S. $4.95 (Canada $6.95)

Java News
pg.88

2 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Web Logic
Full Page Ad

3VOLUME : 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Schlumberger
Full Page Ad

4 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Bristol
Full Page Ad

5VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

EDITORIAL ADVISORY BOARD
Ted Coombs, Bill Dunlap, Allan Hess,

A rthur van Hoff, Brian Maso, Miko Matsumura,
Kim Polese, Richard Soley, David Spenhoff

A rt Dire c t o r : Jim Morg a n
Executive Editor: Scott Davison
Managing Editor: Gail S. Schultz

Editorial Assistant: Christy Wr i g h t i n g t o n
Copy Editor: Alix Lowenthal

Technical Editor: Ed Zebro w s k i
Visual J++ Editor: John Fro n c k o w i a k

Visual Café Pro Editor: Alan Wi l l i a m s o n
P roduct Review Editor: Jim Mathis

Games & Graphics Editor: Eric Ries
Tips & Techniques Editor: Brian Maso

Java Security Editor: Jay Heiser

WRITERS IN THIS ISSUE
Clive Boustred, Todd Busby, Laurence Cable, Larry Chen,
Jason Cohen, Scott Dietzen, David Jung, Kenneth Kranz,
Eric Lehrfeld, Jahan Moreh, Tina Lorentz, Jeff Nelson,

Eduardo Pelegri-Llopart, Ashok Ramachandran, Steven
Schwell, John Tabbone, Joe S. Valley, Alan Williamson

S U B S C R I P T I O N S
For subscriptions and requests for bulk ord e r s ,

please send your letters to Subscription Depart m e n t

Subscription Hotline: 800 513- 7 1 1 1
Cover Price: $ 4 . 9 5 / i s s u e .

Domestic: $ 4 9 / y r. (12 issues) Canada/Mexico: $ 6 9 / y r.
Overseas: Basic subscription price plus air-mail postage

(U.S. Banks or Money Ord e r s) .Back Issues: $12 each

P u b l i s h e r, President and CEO: Fuat A. Kirc a a l i
Vice President, Production: Jim Morg a n
Vice President, Marketing: C a rmen Gonzalez

A d v e rtising Manager: Claudia Jung
A d v e rtising Assistant: Erin O’Gorm a n

Marketing Dire c t o r : L a rry Hoff e r
A c c o u n t i n g : Jennifer Patterson

Senior Designer: Robin Gro v e s
Web Master: R o b e rt Diamond

Web Designer: C o rey Low
Customer Service: Patricia Mandaro

Rae Miranda
Sian O’Gorm a n

EDITORIAL OFFICES
SYS-CON Publications, Inc.

39 E. Central Ave., Pearl River, NY 10965
Telephone: 914 735-1900 Fax: 914 735-3922

S u b s c r i b e @ S Y S - C O N . c o m
J AVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is

published monthly (12 times a year) for $49.00 by SYS-CON
Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.

Application to mail at Periodicals Postage rates is pending at
Pearl River, NY 10965 and additional mailing offices.

P O S T M A S T E R: Send address changes to:
J AVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

39 E. Central Ave., Pearl River, NY 10965-2306.

© COPYRIGHT
Copyright © 1997 by SYS-CON Publications, Inc. All rights reserved. No part of this
publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy or any information storage and retrieval system,

without written permission. For promotional reprints, contact reprint coordinator.
SYS-CON Publications, Inc. reserves the right to revise, republish and authorize its

readers to use the articles submitted for publication.

ISSN # 1087-6944

DISTRIBUTED in USAby

International Periodical Distributors
674 Via De La Valle, Suite 204, Solana Beach, CA92075 619 481-5928

B PA Membership Applied For August, 1996
Ja va and Ja va-based marks are tra d e m a rks or re g i s t e red tra d e m a rks of

Sun Mi c ro s y s t e m s, In c. in the United States and other countri e s.
S Y S - CON Pu b l i c a t i o n s, In c. is independent of Sun Mi c ro s y s t e m s, In c.

Application servers are not new. Many infor-
mation systems, from mainframe transaction
p rocessing environments like CICS to the
s t o red pro c e d u res of a DBMS, provide for the
s e rv e r-side execution of business pro c e s s e s .
Running business logic on a server can impro v e
s e c u r i t y, managability, perf o rmance and
re u s a b i l i t y. With the explosive growth of
Intranets and the Internet, developers need a
rich, flexible server to host their business appli-
cations---a server that complements the con-
tent from databases and Web servers.

As a platform, Java raises the bar for appli-
cation servers. A Java application server mar-
ries the benefits of a robust, scalable applica-
tion server with the expressive power and
dynamism of the Java platform. Java’s byte-
code-based Vi rtual Machine allows objects,
including both code and data, to be exchanged
among heterogeneous systems. This means
that rather than making an RPC call or sending
a message composed of ints and structs to a
s e rv e r, a stock trading application can send a
high-level business object like O rd e r to a
remote business component like Tr a d e r. More-
o v e r, Java’s dynamism allows applications to be
p a rtitioned and re p a rtitioned at runtime by
relocating a service component from one
machine to another.

When it comes to deciding how to part i t i o n
an application between the client and
s e rver(s), developers need flexible tools that
best meet the needs of the problem at hand. For
example, when perf o rming an ad hoc query,
you need database access directly from the
desktop. But in a “thin-client” application, you
want to hide the DBMS operations behind a set
of reusable serv e r-side business pro c e s s e s .
C e rtain applications will re q u i re synchro n o u s
re q u e s t - response between components (Jav-
aBeans) or objects (RMI), while others are bet-
ter organized using asynchronous communica-
tions like event publication and subscription,
or point-to-point messaging. Just as developers
use diff e rent kinds of collections for diff e re n t
kinds of data (e.g., Hashtable, Vector and Set),
they also need a set of off-the-shelf tools
(Remote Method Invocation, Events, Distrib-
uted JavaBeans) for tackling application com-
m u n i c a t i o n s .

Besides code mobility and part i t i o n i n g ,
developers want to use Java-blessed pro g r a m-
ming models: database access via JDBC, name
and dire c t o ry services via JNDI, distributed
objects via RMI and Enterprise JavaBeans, We b
s e rver plug-ins via Servlets, and event manage-
ment and messaging via JMS. Merely wrapping
a pro p r i e t a ry C/C++ API with Java won’t cut it.
Nor will inventing yet another set of non-
p o rtable pro p r i e t a ry APIs. Developers want to

use Java industry - s t a n d a rd APIs so that the
skills they learn on one project will be transfer-
able to other projects and the code they write
will run wherever there ’s a JVM.

Given that a developer should be able to
assemble an application using best-of-bre e d
p roducts, a Java application server must be
compatible with a diverse range of complemen-
t a ry technologies. It should work in harm o n y
with leading Web servers and database man-
agement systems, and across hetero g e n e o u s
Java platforms. The server should also work
with major Integrated Development Enviro n-
ments (IDEs); it should not re q u i re the adop-
tion of an IDE that is pro p r i e t a ry to the applica-
tion serv e r.

S t a n d a rds and portability don’t stop at the
s e rv e r. GUI building technology used for multi-
tier applications should use standard widgets
and JavaBeans – not yet another pro p r i e t a ry
set of widgets. Any automatically generated
Java code should be accessible for further cus-
tomization so that you can tweak it, should you
choose to, and not worry about getting out of
sync with the tool.

F i n a l l y, a Java application server should
p rovide an integrated management enviro n-
ment that offers a comprehensive view of the
application and the serv e r. Transaction seman-
tics must be built in to ensure data integrity
even across distributed components, and the
Java application server must address network
security using SSL and access control lists. The
s e rver should also allow access to the bro a d e s t
number of clients through standard pro t o c o l s
like HTTP and IIOP. And in the end, a Java appli-
cation server should be written entirely in Java
so that it is portable, it can be easily embedded
within value-added applications and so that
new Java-native capabilities can be delivere d
rapidly to market.

This is a tall ord e r. Java has been out of beta
for about two years and many of the pro d u c t s
and applications written in it have been serv l e t
and applet plug-ins to non-Java systems rather
than full-blown production applications. The
time for the all-Java application server is now,
and developers should demand nothing less in
the server than the Java API standards, stabili-
ty and robustness they re q u i re in the client.

About the Author
Scott Dietzen is Vice President of Marketing at
WebLogic, Inc., developers of Tengah, the industry’s
first commercial-grade Java application server. Scott
formerly was the Principal Technologist of Transarc
Corporation. He holds a Ph.D. and M.S. in Computer
Science and a B.S. degree in Applied Mathematics
from Carnegie Mellon University. Scott can be
reached at dietzen@weblogic.com

What Is a Java
Application Serv e r ?

GUEST ED ITORIAL

Scott Dietzen

6 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Suntest
Full Page Ad

7VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

PHONE, ADDRESS
& WEB DIRECTORY

CALL FOR SUBSCRIPTIONS

1800 513-7111
International Subscriptions

& Customer Service Inquiries
914 735-1900

or by fax: 914 735-3922

E-Mail: Subscribe@SYS-CON.com
http://www.SYS-CON.com

MAIL All Subscription Orders or
Customer Service Inquiries to

SYS-CON Publications, Inc.
39 E. Central Ave.

Pearl River, NY 10965 – USA

EDITORIAL OFFICES
Phone: 914 735-1900

Fax: 914 735-3922

ADVERTISING & SALES OFFICE
Phone: 914 735-0300

Fax: 914 735-7302

CUSTOMER SERVICE
Phone: 914 735-1900

Fax: 914 735-3922

DESIGN & PRODUCTION
Phone: 914 735-7300

Fax: 914 735-6547

DISTRIBUTED in the USA by
In tern a ti onal Peri odical Distri butor s

674 Via De La Valle, Suite: 204
Solana Beach, CA 92075

Phone: 619 481-5928

Worldwide Distribution by
Cu rtis Ci rc u l a ti on Com p a ny

739 River Road,
New Milford NJ 07646-3048

Phone: 201 634-7400

We’ve all read about the Intern e t ’s “endless
potential” for redefining the way businesses
operate and computers are built. The Intern e t ’s
astonishing growth is a testament to its ability
to live up to at least some of this hype. Ye t
most corporate Web sites consist strictly of
marketing bro c h u res and other static text and
p i c t u re s .

To truly capitalize on the business potential
the Web offers, organizations need to combine
the We b ’s universal access and deployment
with their own mission-critical business
p rocesses. By making transactions (such as
travel planning, stock trading and package
shipping) available on-line, companies can
achieve benefits such as expanding their mar-
kets to a worldwide audience and accepting
o rders 24 hours a day, all while lowering their
administrative costs.

To deliver applications like these on-line,
corporations must re-engineer their arc h i t e c-
t u res to support large-scale transaction pro-
cessing. Enter Java.

Java enables a rich user interface, secure
database access and high-volume transaction
p rocessing – a combination that has the poten-
tial for dramatic advances in the development
and deployment of Web-based enterprise appli-
c a t i o n s .

H o w e v e r, the Java language alone is not
enough to develop these end-to-end enterprise
solutions. For this, a scalable Java-based plat-
f o rm is re q u i red to make it easy to not only
develop applications, but also to manage and
deploy them. This platform is starting to
e m e rge and consists of client, middle and serv-
er tiers. It is also becoming widely adopted
with the definition of standard Application Pro-
gramming Interfaces (APIs) and the delivery of
c o m p rehensive products, such as develop-
ment tools and component transaction
s e rv e r s .

Implementing this arc h i t e c t u re, users find
and launch applications using traditional
HTML pages and Web servers. But instead of
simply loading a static page, they download a
dynamic “applet” into their bro w s e r. The
applet also contains high-speed protocols that
allow it to communicate directly with applica-
tion servlets or business logic, which exist in
the form of components running in the middle
t i e r. The middle-tier server executes and man-
ages most of the application logic and high-
speed JDBC-based access to distributed data-
bases. Java is also beginning to appear as the
s t o red pro c e d u re language in back-end DBMSs,
allowing data-intensive pro c e d u res to be writ-
ten in Java and executed inside of the DBMS.

The combination of each of these elements
p rovides application developers with a single

p rogramming language across all tiers. It
removes the artificial barriers between client-,
middle- and serv e r-side programming and pro-
vides developers the flexibility they need to
i n c rease productivity (by focusing on building
Java components re g a rdless of where they are
d e p l o y e d) .

To effectively deliver Java on all tiers, stan-
d a rds are emerging for each key component in
the enterprise Java platform. For graphical
development on the client, both JavaSoft and
M i c rosoft have created standard foundation
classes: JFC and AFC, re s p e c t i v e l y. In the mid-
dle tier, Enterprise JavaBeans and ActiveX pro-
vide a standard way to deploy and manage
s e rv e r-side components. In addition to compo-
nents, the enterprise Java platform consists of
a suite of connectivity APIs: Java Naming Dire c-
t o ry Interface (JNDI) for connectivity to enter-
prise naming and dire c t o ry services; Java
Transaction Service (JTS) for transaction ser-
vices and Java Message Service (JMS) for
enterprise messaging systems. JDBC, a call-
level interface similar to ODBC, provides the
s t a n d a rd mechanism for accessing re l a t i o n a l
and legacy data stores. Sybase, IBM, Ta n d e m
and Oracle are working with JavaSoft, the ANSI
SQL standards committee and the JSQL con-
s o rtium to develop standards for running Java
in the database.

As technology vendors release new tools
and servers for building these Java-based
a rc h i t e c t u res, aggressive enterprises can
finally reap the full benefits of the Internet.
Sybase, for instance, is providing a distrib-
uted, end-to-end architecture that answers
the call for mission-critical business applica-
tion development for the Internet. It accom-
plishes this by delivering products to enable
Java in the client, middle and server tiers and
by providing open support for emerging stan-
d a rds, so it can be implemented easily
throughout the IT organization.

This is “Java for the Enterprise”: bringing
together the power of the Java language with
an end-to-end arc h i t e c t u re, in combination
with leading-edge tools and technologies. It
holds great promise for businesses today. In
fact, when implemented corre c t l y, it truly does
o ffer “endless potential”.

About the Author
Tina Lorentz is the Product Manager for PowerJ. Pre-
viously, Tina was part of the marketing team for
Power++ and Watcom C/C++. She joined Watcom
shortly before the merger with Powersoft in 1994.
Prior to that Tina worked for Northern Telecom for
two years as an analyst/programmer, after receiving
a Bachelor of Science in Math from the University of
Waterloo.

Making Enterprise
J a v a a R e a l i t y

FROM THE INDUS TRY

Tina Lore n t z

Java Developer’s Journal
h t tp : / / w w w. Java Devel opers Jo u rn a l . com

Web-Pro Developer’s Supplement

National Java Learning Center, Inc.

JDJ Buyer’s Guide
http://www.sys-con.com/inetbg/index.html

8 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

JDJ FEAT U R E

Abstract
This is the first of a two-part series presenting a Java imple-

mentation of a real-time multi-user blackjack game based on a col-
laborative, active object framework. In this article, we will walk
through the design of an active object framework for developing
collaborative client/server applications. Important concepts, such
as synchronous collaboration, active objects, multicasting, ses-
sions and events are defined and discussed.

Introduction
In the world of collaborative multi-user software, or groupware,

there are two main collaboration models: synchronous and asyn-
c h ronous. The asynchronous model allows multiple users to
exchange and share information through asynchronous messages,
sent at different times to a central location. Plain e-mail, bulletin
boards and Lotus Notes are examples of asynchronous groupware.
The synchronous model, on the other hand, allows information
sharing on a real-time basis; that is, all participants interact at the
same time. Chat systems and multi-user virtual worlds are exam-
ples of synchronous groupware. Both models of collaboration are
necessary in certain situations, yet most so-called groupware
today ignores the synchronous collaboration model. If the goal of
collaborative software is to let people work together concurrently
across the boundaries of time and space, then they should be able
to do so in real-time, in order to allow immediate feedback and
achieve faster group consensus.

The applications of groupware are far-reaching, especially those
of synchronous groupware, and will revolutionize computing in the
next decade. Java has come at the right time to help fuel this revo-
lution.

Java: An Enabling Technology for
Real-time Collaboration

The development of Java has made it easier than ever to create

synchronous groupware over Intranets and the Internet. Java is the
perfect platform to build groupware due to its built-in cross-plat-
form networking features, and its ease of access through popular
browsers. In this article, we will demonstrate one approach to
building synchronous collaborative software in Java, by designing
around an active object model. This approach considerably sim-
plifies implementation of collaborative client/server protocols. A
collaborative client/server protocol specifies control flow among
one server and a set of clients. To illustrate the active object
approach, we present a simple framework for an active object
model. A sample implementation of a multi-user blackjack game
using the framework will be presented in Part 2.

What is an Active Object?
We distinguish active and normal (passive) objects by the fol-

lowing: Active objects possess both a proactive and a reactive
event handler, while a passive object uses only reactive event han-
dling. In other words, active objects are characterized by having a
thread executing a state-based event protocol, in addition to nor-
mal callback-based (reactive) event handling. Most applications
today are written only using callback-based event handling. This is
where an application registers callback methods with the runtime
system, which calls one of the application’s callback methods
when an event occurs. Java’s AWT event handling system (both
1.02 and 1.1) is an example of a callback-based model. A threaded
active object, on the other hand, actively waits for a set of events
to occur, suspending its thread until one of the desired events
occurs. The active object model permits straightforward imple-
mentations of client/server control flow, where events may be
causally dependent upon one another. Implementing control flow
logic is vastly complicated by having to spread the protocol’s
implementation across many callback methods.

As shown in Figure 1, an active object contains two main com-
ponents, an active event handler used to implement client/server

A useful paradigm for implementing
collaborative client/server protocols

by Larry T. Chen & Todd A. Busby

9VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

control flow, and a passive event handler used to implement status
updates. The active event handler is intended to process events
with causal dependencies between each other, while the passive
event handler is intended to process idempotent, self-contained
events (i.e., events that have no causal dependencies between
each other). There should also be no causal dependencies between
events used by the passive handler and events used by the active
handler. For example, in a multi-player blackjack game, the active
hander would control the game flow with respect to the client play-
er’s game. All other status events relating to other players on the
same table would be handled by the passive handler.

There are alternative approaches to building a collaborative
system, such as using RMI. However, RMI is practically equivalent
to a pure callback model, and RMI is not fully supported in current
browsers, making it unusable for deployment of collaborative
applications over the Internet today.

Let’s define an abstract class ActiveObject to represent our con-
cept of an active object.

public abstract class ActiveObject extends Thread

{

public abstract void run();

public abstract void handleEvent(Object evt);

}

Inter-object events are implemented as standard Java objects.
Each event type is identified with a unique integer.

The run() method is where the active control flow is imple-
mented, whereas handleEvent() is used to process callback events.

Note that handleEvent()’s thread should never be suspended
(i.e., no blocking statements should ever be executed inside han-
dleEvent()) because its thread is the thread that the system uses to
process all incoming callback events.

The control flow thread in the run() method should interact
with other objects, either by waiting for events or sending an event
to another object. Let’s define two basic methods in class
ActiveObject to serve these purposes.

protected synchronized Object waitFor(int[] evts) throws ProtocolEx-

c e p t i o n ;

protected void send(Object evt, int destID);

waitFor() takes an int array containing “hash codes” of events
that the control flow thread inside run() is currently expecting. It
either returns with an arriving expected event, or throws a Proto-
colException to signify that an event was received which was not
expected. This makes the control flow processing deterministic,
and results in the automatic checking of client/server protocol cor-
rectness.

Send() transmits an event to the destination object, specified by
destID, which is a numeric identifier assigned to each member of a
session (described later).

Both of these methods are protected to make sure that only the
owning active object uses these methods. (Only run() should use
the waitFor() method since it is a blocking call. send() is non-block-
ing and may be used by both handleEvent() and run().)

We also want support for callback-based event handling, so we
define

protected void registerCallback(int[] evts);

to allow the active object to specify which events should be han-
dled using the callback model in the handleEvent() method.

Implementing Event Queuing
Active event handling requires that the object possess an event

queue, which collects events from other active objects and distrib-
utes them in first-in, first-out (FIFO) order to the object’s active and
passive event handlers. For simplicity, we will implement a FIFO
queue using a Vector, although more efficient implementations
using linked lists or piped streams may also be used. For an imple-
mentation using piped streams, see Tips & Techniques in Java
Developer’s Journal (Vol. 2, Issue 8) by Brian Maso.

A queue obviously requires a way of putting arriving events into
the queue. We define

public synchronized void pushEvent(Object evt);

as the means for putting an arriving event into the queue. This
method will first check if the arriving event is intended for pro-

10 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

cessing by a callback method.
If so, it calls handleEvent()
immediately; otherwise, the
arriving event is pushed into
the queue. More o v e r, if the
run() method is actively wait-
ing for this arriving event, it
immediately calls notify() to
wake up the thread so that the
a rriving event may be
processed.

Implementing the waitFor()
method is straightforw a rd .
First, we save the array of
expected events so that
pushEvent() may be aware of
them when an event arrives.
Then, if the queue is empty, the
t h read waits (using wait())
until an event arrives, which is
when pushEvent() wakes up
the thread using notify(). If the
queue is not empty or the
thread is awakened, it proceeds
to check that the first event in the queue is
an expected event, returning it if it is an
expected event, or throwing a ProtocolEx-
ception if it is not.

Adding Support for Collaboration
To support collaborative client/server

p rotocols, the active object framework
must support event communication among
a set of objects interacting within a group.
Any object wishing to notify all other
objects in the group should be able to mul-
ticast an event to the rest of the group with
one call, without having to track the other
group members themselves.

We introduce the concept of a session to
represent a group of collaborating active
objects. A session is identified by its ses-
sion name and its session instance number.
Since it may be necessary to run multiple
sessions concurrently, the session instance
number (or sessionID) distinguishes
between multiple instances of the same ses-
sion protocol.

In the Java/Internet environment, mak-
ing collaboration work among applets
requires a server program to coordinate all
participants in the session. This is because
1) an applet may only connect to its origi-
nating server, and may not communicate
with other applets directly, and 2) a server
is needed to start a daemon for each active
session to provide a central location to
which clients can connect. Thus, our Java
collaborative model resembles Figure 2.

Let’s define a class called ActiveSession
to represent our concept of a session. The
“Active” prefix is just to remind us that it
represents a group of active objects and
has nothing to do with Microsoft’s ActiveX.

public class ActiveSession extends Object

{

public ActiveSession(String sessionName,

int sessionID);

public static void join(String sessionName,

int sessionID)

}

A session is started by the server-side
active object using

new ActiveSession(sessionName, sessionID);

In our framework, a server is always
identified with a numeric id of 0. Thus,
clients always send an event to the current
s e rver using with a destID of 0, i.e.,
send(evt,0);

Then, clients join the session
by calling

ActiveSession.join(sessionName, sessionID).

A particular session type and instance
(sessionID) must be started by a server
before any client can join it using the same
session name and sessionID. Any number of
parallel sessions, each with a unique ses-
sionID, may be started by the server.

Clients are assigned a numeric id start-
ing from 1, up to the maximum number of
clients allowed in the session. This numeric
id may be chosen by the client, or it may be
dynamically assigned by the session entity
by finding, for example, the first available
slot in the session. The sample implemen-
tation given in the code listings lets the
clients choose their own numeric id.

Of course, we also need to add a multi-
cast command to our API to send an event
to everyone in the group.

public void mcast(Object evt, int omitID)

The omitID allows the multicast sender
to omit sending a copy to someone in the
group. Usually, the sender will not need a
copy of the multicast event, so omitID usu-
ally specifies the sender itself.

Implementing Network
Communication

Full networking support is not given in
the code listings due to space limitations.
Instead, we do provide a simulated network
in Listing 1b so that the collaborative
client/server protocol may be demonstrat-
ed and tested using one program, by instan-
tiating a server-side active object and sev-
eral client-side active objects all in the
same program. The clients and server will
communicate strictly through event-based
communication, as if they were talking
across the network. However, we will dis-
cuss here, issues in implementing network
support for our active object framework.
• ActiveSession constructor: C reating an

ActiveSession object is equivalent to start-
ing a daemon to listen for incoming client
connections. However, we need to consid-
er the usage of port numbers. Either all
session types use the same port number,
or each session type uses a separate port
n u m b e r. If all session types use the same
p o rt number, only one server socket
(j a v a . n e t . S e rverSocket) needs to be cre a t-
ed. Otherwise a server socket needs to be
c reated for each session type in use. Note
that there may also be multiple sessions
instances for a single session type. Com-
munications for multiple session
instances of the same session type may be

Figure 1: Active object model

11VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

RogueWave
Full Page Ad

12 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

multiplexed through the
same socket, but of course
the server needs to sort out
events as it receives them
and forw a rd them to the
a p p ropriate sessions. This
implies that each event
must carry a session name
and sessionID.

• A c t i v e S e s s i o n . j o i n () : A
request to join a session
from the client translates
to a connection request to
the server on a cert a i n
p o rt---the port associated
with the desired session.
The server, upon a connec-
tion request, should check
whether the requested ses-
sion name and session
instance are active (i.e.,
have already been started
by the server).

• ActiveObject.send(): Since
we’ve chosen to use class
java.lang.Object as the
base class for our events,
we need to figure out a way
to serialize the data mem-
bers, or instance variables,
of any arbitrary subclass of
Object. In Java 1.1, serial-
ization is available to aid in
this task. Unfortunately, in
Java 1.0.2 which resides in
most browsers in use today, strictly
speaking this is impossible. However, we
may simulate serialization by manually
c o n v e rting each of the values of the
object’s instance variables into a serial-
ized form in the toString() method. We
also need to provide a means of deserial-
izing the values of the instance variables
and recreating the event object. This will
require adding a required fromString()
method (not part of java.lang.Object), so
another derived abstract class or inter-
face is required.

• A c t i v e O b j e c t . m c a s t () : An ideal imple-
mentation of group multicast would use
multicast sockets (java.net.Multicast-
Socket) to communicate efficiently with
other group members. However, applets
are not allowed to open multicast sock-
ets, and even if they were, operation of a
multicast socket through the Intern e t
requires the underlying support of the
Multicast Backbone (MBONE), which is
not yet widely deployed. Moreover, multi-
cast sockets only support unre l i a b l e
datagrams, and would thus re q u i re
designing a reliable protocol. An interim
solution, though inefficient, is to use iter-
ative unicasting through multiple TCP
sockets to achieve the same effect; that

is, the server sends a copy of the event to
each connected client in the session.
Listing 1b implements a simulated net-

work within the ActiveSession class. Imple-
menting full networking support is left as an
exercise to the reader.

Putting it to Work
Now, to build a collaborative system

using active objects, we may subclass
ActiveObject to define a server active
object, and define another subclass for
client active objects. Required event types
a re defined by subclassing Object and
implementing hashCode() to re t u rn a
unique integer identifier for each event
type. We must carefully design the protocol
such that causally dependent events are
processed in the run() method, while the
self-contained, independent events are
processed in handleEvent().

To illustrate in detail active objects at
work, the second part of this series will pre-
sent a multi-user blackjack game built using
our collaborative active object framework.

Conclusion
Active objects are a useful paradigm for

implementing collaborative client/server pro-
tocols. They allow for intuitive coding of

c l i e n t / s e rver control flow, rather than being
f o rced to use awkward callback methods to
p rocess causally dependent events. Active
objects are similar to actors and agent-orient-
ed programming, well-known in the distrib-
uted systems research community. The
active object paradigm has been used to suc-
cessfully implement a full-scale multi-user vir-
tual world populated with avatars and collab-
orative games. This virtual world is named
Funtopia, at http://www. f u n t o p i a . c o m .

A complete example for the framework
presented is available at http://www.avan-
teer.com.

About the Authors
Larry T. Chen is a co-founder of Avanteer, Inc., a
company focusing on developing Java-based collabo-
rative software. He is also pursuing a Ph.D. degree
in the area of distributed systems at the University of
California, Irvine. He may be reached at
larryc@avanteer.com.
Todd Busby is a project manager at Avanteer, Inc.
Todd holds an MS in Computer Science from the Cal-
ifornia State University, Fullerton. He may be reached
at toddb@avanteer.com.

toddb@avanteer.com

larryc@avanteer.com

Figure 2: The session concept for collaboration

13VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

14 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Listing 1a: Active object.
import java.util.*;

public abstract class ActiveObject extends Thread

{

/* for efficiency, use a linked-list implementation */

private Vector eventQueue = new Vector();

private BitSet callbackSet = new BitSet();

private int[] expectedEvts;

/* current active session */

ActiveSession session;

public synchronized void pushEvent(Object evt)

{

//check if intended for callback

if (callbackSet.get(evt.hashCode())) {handleEvent(evt); return;}

//check beginning of queue

e v e n t Q u e u e . a d d E l e m e n t (e v t) ;

//notify waiting object

if (checkQueue(expectedEvts) != null) notify();

}

private Object checkQueue(int[] evts)

{

if (evts == null) return null;

Object firstEvent = eventQueue.elementAt(0);

for (int i=0; i<evts.length; i++)

if (evts[i] == firstEvent.hashCode())

return firstEvent;

return null;

}

protected void registerCallback(int[] evts)

{

for (int i=0; i<evts.length; i++)

c a l l b a c k S e t . s e t (e v t s [i]) ;

}

protected void send(Object evt, int destid)

{

s e s s i o n . s e n d (e v t , d e s t i d) ;

}

protected void mcast(Object evt, int omitid)

{

s e s s i o n . m c a s t (e v t , o m i t i d) ;

}

protected Object waitFor(int evt)

{

int[] evts = new int[1]; evts[0]=evt;

return waitFor(evts);

}

public synchronized Object waitFor(int[] evts)

{

//save expected events

expectedEvts = evts;

//if queue is empty, wait

if (eventQueue.size()==0)

try {wait();} catch (Exception e) {}

//check front of queue and return if valid

Object arrivedEvent = checkQueue(evts);

if (arrivedEvent != null)

{

e v e n t Q u e u e . r e m o v e E l e m e n t A t (0) ;

return arrivedEvent;

}

//throw ProtocolException here!

}

/* implement active control flow here in subclass */

public abstract void run();

/* implement passive callback event handling here in subclass */

protected abstract void handleEvent(Object evt);

}

Listing 1b: Active session.
import java.util.*;

public class ActiveSession extends Object

{

static Hashtable sessions = new Hashtable();

private Vector members = new Vector(); //Vector of ActiveObjects

public ActiveSession(ActiveObject server,

String sessionName, int sessionID)

{

A c t i v e S e s s i o n . s e s s i o n s . p u t (s e s s i o n N a m e + s e s s i o n I D , t h i s) ;

m e m b e r s . a d d E l e m e n t (s e r v e r) ;

}

public static ActiveSession join(ActiveObject obj,

String sessionName, int sessionID)

{

ActiveSession s = (ActiveSession)

(A c t i v e S e s s i o n . s e s s i o n s . g e t (s e s s i o n N a m e + s e s s i o n I D)) ;

s . m e m b e r s . a d d E l e m e n t (o b j) ;

return s;

}

public void send(Object evt, int clientid)

{

((ActiveObject) members.elementAt(clientid)).pushEvent(evt);

}

public void mcast(Object evt, int omitid)

{

for (int i=0; i<members.size(); i++)

if (i!=omitid)

((ActiveObject) members.elementAt(i)).pushEvent(evt);

}

}

Net Guru
1/2 Ad

15VOLUME: 2 ISSUE: 12 •h t t p: //w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

16 • VOLUME: 2 ISSUE: 12 h t t p: //w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

My last column introduced you to object
orientation and discussed how some of the
principles are expressed in Java. In particu-
lar, we were working with a chess example.
Also, there was an assignment. You were to
think about the classes: Mammal, Human
and Canine, and how one might use Java
notation and inheritance to describe this
small taxonomy system. This column will
continue with OO by reviewing the assign-
ment and explain a powerful feature called
polymorphism.

Remember that the principal thrust of
OO is to model a system. A system is com-
posed of objects and the relationships and
interactions between the objects. An object
is a structure that exhibits state, identity
and behavior. We create a class to describe
a definition for a type of object. A class is
similar to a blueprint for a house object. It
describes the structure of a house, but dif-
ferent houses built from the same blueprint
can have different colors, appliances, etc.
Instances of classes are created that can
actually maintain states and do things
(behave).

The assignment, discussed previously,
was to consider a taxonomy system. A
Mammal would be a base class that defines
some common behaviors of mammals, and
classes Canine and Human would imple-
ment the behaviors particular to their own
species. The goal is to model this system,
identifying the objects and their states,
identities and behaviors. To start modeling
the system, consider the base class Mam-
mal. What is a Mammal? If I remember cor-
rectly from elementary school, a mammal is
a warm blooded creature that has fur and
gives birth to live young. There is probably
more to it, but this definition will suffice.

Considering this, what are some possible
states of a mammal? The ones mentioned in
the definition are fixed. All mammals have
f u r, warm blood and give birth to live young.

What are some states that can vary among
mammals? Well, mammals are either male
or female. Mammals have a specific number
of legs. And of course, a mammal can be a
h e r b i v o re, carn i v o re or omnivore .

What are the identities of a mammal?
What else is a mammal besides just being a
mammal? We can say that a mammal is also
a vertebrae. Just as a human is a mammal,
a mammal is a vertebrae. Generally, if you
can describe the relationship between two
classes using the phrase ‘is a’ or ‘is a kind
of’, the two classes share an inheritance
relationship. In Java, one would denote that

class Mammal extends Vertebrae, and class
Human extends Mammal. The relationship
is transitive, meaning that a Human is also
(‘is a’) Vertebrae.

What are the behaviors of a mammal?
There are many things that a mammal can
do, but for this exercise, the Ma m m a l
model will have only one behavior: walk. All
mammals can walk (we assume). Take a
look at Listing 1 to see how our Mammal is
modeled in Java.

Notice the static final state variables.
These are constant values that are included

in the class to assist the programmer. Since
things like gender and dietHabits can only
have certain values, it is common practice
to include static final data members to ease
the assignment of these states. Later in
some other part of our code, a programmer
can use these static final data members by
making assignments such as: gender =
Mammal.MALE; or dietHabits =
Mammal.OMNIVORE.

The next step is to model a Human. As
with Mammal, we are going to keep the
model simple to illustrate a point. We can
say that a human is a mammal with some
added states and behaviors. What other
states can a human maintain? In the inter-
est of simplicity, let’s say that a human has
a name. Also in the interest of simplicity,
let’s say that the only other behavior that
separates a human from a mammal is a
human’s ability to go to work. The model
for this definition of a human would look
like Listing 2.

Notice first that a Human is not an
abstract class. We have designed our sys-
tem this way to better reflect the real world.
T h e re is nothing in the real world that you
can point to and say: “That is ONLY a mam-
mal.” Every mammal is a member of some
species. So, since there are no real world
objects that are only mammals, there will be
no objects in our system that are only mam-
mals. You cannot create a mammal object.

Keep in mind that just as in the real
world, you can point to a human or dog and
say, “That is a Mammal.” In our system too,
you can refer to an instance of Human or
Canine and say, “That is a Mammal.” How-
ever, in addition to being a mammal, those
objects can also be identified as Humans
and Canines. We will examine this in more
detail after we model class Canine.

Class Human extends Mammal. Remem-
ber from the last article that the first line of
a Java class definition expresses the identi-
ties of the class. A Human can be identified
as a Human or as a Mammal. What does it
mean to be a mammal? In our definition (i.e.
our Mammal class), a Mammal has certain
states (i.e. gender, dietHabits, etc.) and
behaviors. These states and behaviors are
inherited by class Human. This means that
e v e ry human also has a gender and
dietHabits and can also Walk. Furthermore,

A parent class with its own
states and behaviors

FROM THE GROUND UP

by John Tabbone

In t roduction to OO : p a rt 2

P o l y m o r p h i s m

“Inheritance and

polymorphism are

intrinsically linked.

You can’t have

polymorphism

without inheritance.”

“Inheritance and

polymorphism are

intrinsically linked.

You can’t have

polymorphism

without inheritance.”

17VOLUME: 2 ISSUE: 12 •h t t p: //w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Kovisky
full

18 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

class Mammal extends class Ve rt e b r a e ,
which we have not defined. Had class Ver-
tebrae been defined, a Human would have
the behaviors and states defined in that
class as well as a Vertebrae identity.

Class Human provides a class specific
implementation for the abstract method
Walk(). This means that we define the walk
method for a human to reflect how a human
walks. First of all, a human has two legs. He
will throw one foot out in front of him, fall a
bit until that foot hits the ground, and then
repeat the process for the other foot. The
Walk method for a human will be different
than the walk method for a four legged
creature because a four legged creature
walks differently. Focus on the fact that all
mammals can walk, regardless of how the
method is actually implemented.

Finally, class Human defines the state
variable name and the behavior
goToWork(). These are things specific to
Humans. Since these states and behaviors
are ones not shared by all mammals, they
are defined in the Human class.

A Canine is also a Mammal. For this exer-
cise, our Canine class will have a bark
behavior, and they will be carnivores. Look
at Listing 3 for a brief class description.

We now have classes that we can use to
create Mammal, Canine and Human objects.
Our class definitions are pretty light, but
sufficient to demonstrate polymorphism.
Polymorphism is an ability to have many
shapes. It refers to the ability of an object
to assume the identity of one of its parent
classes. In this exercise, an object of type
human can assume the identity of a Mam-
mal. In other words, a variable of type Mam-

mal can contain an instance of a Human or
a Canine or any other descendant of Mam-
mal. Listing 4 demonstrates this.

When a Human is being identified as a
Mammal, only methods defined in class
Mammal can be called. m.bark() makes no
sense because bark() is a behavior of a
Canine. When walk() is called on m from
Listing 4, the walk method defined in class
Human is actually invoked. Similarly, a state
variable overridden in class Human will be
accessed through m with the same effect.
That is, even though we are identifying the
object through m (a mammal), the state
variable accessed will actually be of class
Human. This leads to a more formal defini-
tion of polymorphism: Polymorphism is an
object’s inherent ability to be identified as

one of its parent classes, yet implement its
own specific states and behaviors.

Notice that polymorphism is an ‘inher-
ent ability’. Inheritance and polymorphism
are intrinsically linked. You can’t have poly-
morphism without inheritance. The key
here is that a class can have many identi-
ties. Remember, the first line of a class def-
inition enumerates the possible identities
that the class can assume. In the case of
Human and Canine, both can also be identi-
fied as Mammals. Even when an object of
type Human or Canine is identified as an
object of type Mammal, the implementation
of methods and data contained in state
variables remains. Therefore, if m.walk() is
called immediately after m = john in Listing
4, the walk() method executed will be
john’s walk method. The Human one.

Polymorphism is widely demonstrated
in Java, especially in the AWT. The Abstract
Windowing Toolkit has an abstract base
class Component. Component is the parent
class of all of Java’s widgets. Things like
Buttons, Labels and Textfields all extend
class Component. A Panel is an object that
can contain other Components. One might
add Buttons and other Components to a
Panel for screen display. A Panel needs to
know the size of every widget that it is hold-
ing to make sure that everything is laid out
correctly. Thanks to polymorphism, a Panel
can maintain an internal list or array of
Components. Any descendant of Compo-
nent can be added to the list, and therefore
be displayed on a Panel. So, using one array
of type Component, a Panel can keep a list
of any kind of widget added to it, as long as
the widget descends class Component. Fur-

Listing 1: Abstract class Mammal extends Vertebrae.
{

public static final int M A L E = 0 ;

public static final i n t F E M A L E = 1 ;

public static final i n t H E R B I V O R E= 0 ;

public static final i n t C A R N I V O R E= 1 ;

public static final i n t O M N I V O R E = 2 ;

public final boolean h a s W a r m B l o o d =

t r u e ;

public final boolean g i v e s B i r t h T o L i v e Y o u n g =

t r u e ;

public final boolean h a s F u r =

t r u e ;

public int g e n d e r ; // 0 for male, 1 for female

public int n u m L e g s ; / /

public int d i e t H a b i t s ; // 0 for herbivore, 1 for carnivore,

2 for omnivore

abstract public void walk();

} // end class

Listing 2: Class Human extends Mammal.
{

S t r i n g n a m e ;

public Human()

{

g e n d e r = M A L E ;

numLegs = 2 ;

d i e t H a b i t s= O M N I V O R E ;

}

public void walk()

{

// The code that describes how a human walks goes here.

}

public void goToWork()

{

// The code that describes how a human goes to work goes here.

}

“ A system is
composed of

objects and the
relationships and

interactions
between the

objects.”

“ A system is
composed of

objects and the
relationships and

interactions
between the

objects.”

19VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

20 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

thermore, method getSize() is defined in
class Component. The panel can traverse
the array and call getSize() on every ele-
ment. Polymorphism will ensure that the
actual size returned, is the size stored in
the Button, Label, Textfield or whatever the
actual Component is that has been added
to the Panel.

T h e re are many more examples of Poly-
morphism in the Java core packages. Yo u r
assignment is to look through the API docu-
mentation and find some. Start with any
package you like. You will find a lot in the
java.io package. Remember, polymorphism
is an object’s inherent ability to be identified
as one of its parent classes, yet implement
its own specific states and behaviors. Look
for abstract base classes. They are typically
a dead giveaway for polymorphism.

About the Author
John V. Tabbone is a lecturer at New York
University’s Information Technologies Institute, where
he teaches two Java programming courses and advis-
es on curriculum development. He has been a
professional Java programmer since early 1996, and
continues to consult on and develop systems for a
variety of New York based businesses. You may
e-mail him with questions and comments at
john.tabbone@nyu.edu.

} // end class

Listing 3: Class Canine extends Mammal.
{

public Canine()

{

g e n d e r = M A L E ;

numLegs = 4

d i e t H a b i t s= C A R N I V O R E ;

}

public void walk()

{

// the code that describes how a human walks goes here

}

public void bark()

{

// Woof!

}

}

Listing 4.
. . .

. . .

Human john = new Human(); // create a human object

Mammal m; // declare a Mammal variable

m = john; // this is legal;

1/2 Ad

john.tabbone@nyu.edu

21VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Much has been said and written about Java security and devel-
oping secure Java applications for deployment on the Internet.
However, most available materials deal with Java security in the
context of three different but related aspects:

➥ The Java language code safety mechanism via the sandbox model

➥ The Java compiler and runtime environments

➥ The Java SecurityManager class

JDJ FEAT U R E

by Jahan Moreh

Experiences in using JDK 1.1 Security

23VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

24 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

In an article entitled Implementing a
Security Policy (Java Developer’s Journal,
Vol. 2., Issue 8), Qusay Mahmoud wrote on
the practical uses of the Java SecurityMan-
ager class.

Starting with JDK 1.1, Java provides a
number of classes and interfaces for imple-
menting a comprehensive security policy.
These include cryptographic interfaces for

signature production and verification, cryp-
tographic checksums as well interfaces for
access control. This article focuses on
practical uses of the cryptographic inter-
faces of JDK 1.1, including their use in cre-
ating and verifying the origin of trusted
applets.

Overview
Many organizations are attempting to

harness the connectivity power of the Inter-
net to conduct real business on a global
scale and earn more money. In order for
electronic business to flourish, the infra-
structure must provide a basic framework
of trust. The elements of trust include pro-
visions for:
1. Identification and Authentication – The

process of ascertaining the identity of
one party to another

2.Authorization and Access Control – The
p rocess of granting and denying the
rights to a party to perform a certain
operation

3. Privacy-protection – The assurance that
the details of the transaction can not be
revealed to a third party.

4. Integrity-protection – the assurance that
a receiving party would reject a transac-
tion that is accidentally or maliciously
corrupted

5. Non-repudiation – The assurance that an
entity cannot deny being a party to a
transaction after it voluntarily engages in
that transaction

6.Audit – A means of securely keeping a
detailed record of events for possible
future examination

Java is rapidly becoming the language of
choice for developing and deploying Inter-
net-based applications. The longevity of
Java depends on many factors, including
the availability of built-in tools to imple-
ment a security policy that reflects the
needs of individual organizations.

Trust Model before JDK 1.1
F rom its very inception, the Java lan-

guage has implemented a simple and
somewhat effective trust model. This
model – known to Java developers as the
sandbox – provides a binary choice with-
in the runtime environment: trust every-
thing that is local, but do not trust any-
thing that is downloaded. In other word s ,
the Java runtime completely trusts each
and every Java application and complete-
ly restricts each and every downloaded
Java applet. The Java runtime re s t r i c t s
applets from accessing local files. This
restriction manifests itself in several
ways, including the restriction to load a
local class, to link with a local library and
to read and write local files. Implementa-
tions of the JDK within each browser mod-
ify the SecurityManager class to pro v i d e
d i ff e rent degrees of access to downloaded
applets. However, the trust model re m a i n s
b i n a ry.

The Sandbox Dilemma: To
Use or Not to Use

Experience shows that from a security
policy standpoint, enforcing the sandbox

model is very important. The sandbox pro-
tects you from malicious attacks and mis-
behaving applications that can delete your
files, misuse private information or con-
sume your system resources. Simultane-
ously, most applications need to interact
with users in a personalized way. This
means that in order for an applet to provide
a useful function – especially in the context
of electronic business – it does need access
to some local resources.

Solutions to the Sandbox Dilemma
JavaSoft addresses the sandbox dilem-

ma in two releases of the JDK. JDK 1.1
allows the originator of an applet to digi-
tally sign the applet (see the sidebar for a
primer on digital signatures). The digital
s i g n a t u re provides a highly tamper re s i s-
tant fingerprint of the applet. The client
who downloads the applet can choose to
t rust the originator and allow it to access
local re s o u rces (files, network connec-
tions, etc.). There f o re, a client can tre a t
each applet diff e rently based on its digital
s i g n a t u re. However, the trust model for a
given applet remains binary. JavaSoft
a d d resses this problem in JDK 1.2 with fine
grain access control. JDK 1.2 intro d u c e s
the concept of protection domains, which
allows a client to specify exactly which
re s o u rces a given applet may access and
for what reason (read, write, connect,
e t c .) .

JDK 1.1 Tools for Applet Signing
JDK 1.1 provides two tools for applet

signing: Javakey and Jar. Use Javakey to cre-
ate identities and load them into your iden-
tity database. Once you create an identity,
you can designate it as a trusted identity.
Applets that are signed by a trusted identi-
ty are trusted applets. JDK 1.1 treats trust-
ed applets as local applications: a trusted
applet has access to everything a local
application can access. Using Javakey you
can also create a signer identity. A signer is
an identity with a private key. You create a
signer on the server side before signing the
applet. Table 1 shows the various options
of Javakey.

Even though Jar is not a security tool, it
is very useful for packaging a series of files,
including Java classes, into a single down-
loadable entity. The Jar command provides
the same function as the UNIX tar com-
mand. Table 2 shows the various options of
Jar.

Steps in Creating a Signed Applet
In order to create a signed applet, you

need to take the following steps. Listings 1
and 2 show an example of each step. The
string ambrosia is the prompt of the system
that was used to generate these examples.

Option Meaning
c Create a new identity
d Display certificate for an identity
gc Generate a certificate for an identity
gk Generate a key pair for an identity
gs Generate signature for data stored in

a file
ic Import a certificate for an identity
ik Import public key for an identity

from a file
ikp Import key pair for a signer identity

from a file
l List all identities in the identity data-

base in succinct form
ld List all identities in the identity data-

base in detail
li List an identity in detail
r Remove an identity from the

database
s The new identity is a signer (has a

private key)

Table 1: Javakey options

Option Meaning
0 Store only; use no ZIP compression
c Create new archive
f Use the next argument as the archive

file name
m Include manifest information from

specified manifest file
M Do not create a manifest file for the

entries
t List table of contents for archive
v Generate verbose output on standard

error
x Extract named (or all) files from

archive

Table 2: Jar options

25VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

26 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Step 1: Create a signer identity and gen -
erate key pair.

Using Javakey. you would create a signer
and trusted identity. In Listing 1, with the
command [1] we create a signer identity
called OpenHorizon. After creating a signer
identity, you need to generate a public/pri-
vate key pair for that identity. The algo-
rithm you choose for the signing and veri-
fying signatures and length of the key are
important parameters contributing to the
overall security of your environment. In
Listing 1, with command [2] we choose the
Digital Signature Algorithm (DSA) with a
key length of 1024 bits. The public and pri-
vate keys are stored in two files called
oh.pub and oh.priv respectively. Note that
it is extremely important to protect the pri-
vate key file.
Step 2: Generate a certificate for the
signer

Every signer must have its public key
certified. In a real Public Key Infrastructure
(PKI) environment, a Certification Authori-
ty (CA) issues a certificate which binds a
signer’s identity to the signer’s public key.
The CA itself may have a certificate issued
to it by another, higher authority CA. This is
called chain-of-trust and is not supported
by JDK 1.1. In Listing 1, with command [4]

we create a self-issued certificate: a certifi-
cate issued by the identity OpenHorizon for
itself. Note that certificates are issued
according to a certificate directive file. The
certificate directive is shown in Listing 1,
with command [3]. It specifies, among
other information, a 1 year validity period,
a serial number (1100) and the name of the
file where the certificate will be stored
(oh.cert).
Step 3: Create and sign the archive

You would follow the pro c e d u res in
steps 1 and 2 to prepare your system for
signing applets. Follow the procedures in
steps 3 and 4 every time you need to create
and deploy a signed applet. In Listing 1,
with command [5] we first create a Jar file
of all classes that comprise a sample of a
software called Ambrosia. We call the target
Jar file AmbrosiaSamples.Jar. Using com-
mand [7], we sign the Jar file with the pri-
vate key of an identity whose name appears
in a signature directive file (listed with com-
mand [6]). The signature file name that
appears at the end of the signature direc-
tive file is used to create the signature as an
individual file (OHSig.DSA). The signature
file is included in the Jar file.
Step 4: Deploy signed archive on the Web
server.

Javakey creates a file with the same
name (Ambro s i a S a m p l e s .Jar) and the
extension .sig. We rename Ambro s i a .Ja r. s i g
to Ambro s i a .Ja r, which is a more suitable
name for deploying the signed classes on
the Web serv e r. In Listing 1, with com-
mand [8] we rename the Jar file. Listing 2
shows the HTML file for one applet
(ohpub.class) embedded in the signed Ja r
f i l e .

Configuring the Client
The client must be configured to re c o g-

nize and validate the signer of the applet.
Listing 3 shows the Javakey commands
you can use to configure the client. Yo u
may have to use a diff e rent set of com-
mands depending on your bro w s e r. The
client must obtain the certificate file
(o h . c e rt in this example) before loading it
to the identity database (Listing 3, com-
mand [9]).

The Java Cryptographic
Architecture

In this section of the article we focus on
the Java Cryptographic Arc h i t e c t u re (JCA).
F i g u re 1 shows the basic hierarchy of the
JCA. There are three classes that form the
foundation of the JCA: KeyPairGenerator,

Figure 1: Basic hierarchy of the JCA

27VOLUME: 2 ISSUE: 12 •h t t p: //w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

28 • VOLUME: 2 ISSUE: 12 h t t p: //w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

MessageDigest and Signature. You may
notice that the JCA does not include any
classes for encryption. The reason is that
including encryption classes or interf a c e s
would make the JDK non-export a b l e .
T h e re f o re, JavaSoft has elected to pro v i d e
an adjunct package called the Java Cry p t o-
graphic Extensions (JCE), which is only
available to customers in the United States
and Canada.

The JCA is based on the notion of Cry p-
tographic Package Providers (CPP). As
such, the JDK itself simply provides engine
classes and interfaces. Engine classes and
i n t e rfaces may be implemented by one or
m o re CPP’s. JDK 1.1 comes with a default
implementation for the DSA, MD5 and SHA
algorithms. Other CPPs can provide imple-
mentations for the same or new algo-
rithms. CPPs may be installed statically at
the time of JDK 1.1 installation. You can
also use methods of the Ja v a . s e c u r i t y. S e c u-
rity class to dynamically manage
p ro v i d e r s .

Getting an Instance of an Engine
C l a s s

All three engine classes have a factory
method that allows you to instantiate an
object with a specified algorithm and a
specified pro v i d e r. For example, in Li s t i n g
4 line 9 we obtain an instance of the DSA
s i g n a t u re algorithm provided by the
default CPP (in this case, SUN). If desire d ,
one can use another version of the
getInstance method to name a specific
p ro v i d e r.

Signing Data and Verifying
S i g n a t u re s

The Signature class can be used to both
sign data and verify the digital signature of
the data. Consequently, when you instanti-
ate a Signature object you must initialize it
to be either in a SIGN state or a VERIFY
state. Figure 2 illustrates the states of the
S i g n a t u re class. Once in a given state, you
can supply the Signature class with as
much data as you wish and with as many
update method calls as you wish. After you

have supplied all the data, you would
invoke either the sign or the verify method
to perf o rm the corresponding operation.
After the data is signed or verified, the Sig-
n a t u re object re t u rns to an uninitialized
s t a t e .

Digitally Signing Data
Listing 4 shows a partial code segment

for digitally signing data. Lines 1 and 2
i m p o rt the security packages needed for
signing data. Lines 3 and 4 define two byte
a rrays: one is the input data to be signed,
and the other is the digital signature. At
line 9 we instantiate a Signature object
which implements the DSA algorithm by
the default provider (i.e., SUN). Line 10
places the object in the SIGN state. Line 11
feeds the data to the object and Line 12
p roduces the digital signature. Note that if
we were receiving the data in chunks, say
f rom a user, we could call the update
method as many times as re q u i red until
t h e re was no more data. Also note that the
private key that is used to sign the data
must be loaded (not shown in the code)
prior to calling the initSig method. Use
methods of KeyPair and Key interfaces to
set the private key.

Verifying the Digital Signature
Listing 5 shows a partial code segment

for verifying the digital signature of some
arbitrary data. Lines 1 and 2 import the
security packages needed for verifying the
digital signature on the data. Lines 3 and 4
define two byte arrays: one is the input data
whose digital signature is to be verified and
one is the actual digital signature. Line 6
defines a boolean that will be set by the ver-
ify method to true or false depending on
whether the signature is valid or not. At
Line 10 we instantiate a Signature object
which implements the DSA algorithm by
the default provider (i.e. SUN). Line 11
places the object in the VERIFY state. Line
12 feeds the data to the object and Line 13
verifies the digital signature. Again, note
that if we were receiving the data in chunks,

Listing 1: Creating a signed applet.
ambrosia[1] -> javakey -cs OpenHorizon true

created identity [Signer]OpenHorizon[uninitialized][trusted]

ambrosia[2]-> javakey -gk OpenHorizon DSA 1024 oh.pub oh.priv

Generated DSA keys for OpenHorizon (strength: 1024).

Saved public key to oh.pub.

Saved private key to oh.priv.

ambrosia[3]-> cat oh.certDir

i s s u e r . n a m e = O p e n H o r i z o n

i s s u e r . c e r t = 1

subject.name=Open Horizon

subject.real.name=Open Horizon, Inc.

subject.org.unit=Software Development

subject.org=Open Horizon

s u b j e c t . c o u n t r y = U S

start.date=10 April 1997

end.date= 10 April 1998

s e r i a l . n u m b e r = 1 1 0 0

o u t . f i l e = o h . c e r t

ambrosia[4]-> javakey -gc oh.certDir

Generated certificate from directive file oh.certDir

ambrosia[5]-> jar cf AmbrosiaSamples.jar *.class

ambrosia[6]-> cat oh.signDir

s i g n e r = O p e n H o r i z o n

c e r t = 1

Figure 2: States of the Signature class

29VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

30 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

we could call the update method as many
times as required until there was no more
data. Also, note that the public key that is
used to verify the digital signature must be
loaded (not shown in the code) prior to
calling the initVerify method. Use methods
of KeyPair and Key interfaces to set the
public key.

Conclusion
JDK 1.1 provides an excellent starting

point for building a secure and trustworthy
infrastructure. Java security is much more
than code safety and sandboxing. Wi t h
JavaSoft’s plan to provide more security
classes and interfaces, either as part of the
JDK or as adjunct packages, Java will solid-
ify its position as the language of choice for
developing and deploying Intern e t - b a s e d
applications.

About the Author
Jahan Moreh is the chief security architect at Open
Horizon, Inc. (www.openhorizon.com). He is a fre-
quent speaker on the topic of Java security at various
conferences. Additionally, he is a senior member of
the teaching staff at UCLA’s department of Informa-
tion Science where he teaches classes in distributed
system security and CORBA. You can reach him at
jmoreh@openhorizon.com

c h a i n = 0

s i g n a t u r e . f i l e = O H S i g

ambrosia[7]-> javakey -gs oh.signDir AmbrosiaSamples.jar

Adding entry: META-INF/MANIFEST.MF

Creating entry: META-INF/OHSIG.SF

Creating entry: META-INF/OHSIG.DSA

Adding entry: ohsub.class

Adding entry: ohpub.class

Signed JAR file AmbrosiaSamples.jar using directive file

o h . s i g n D i r

ambrosia[8]-> mv AmbrosiaSamples.jar.sig AmbrosiaSamples.jar

Listing 2: HTML file for deploying on the Web server.
< H T M L >

< H E A D >

<TITLE> Open Horizon Publishing Application</TITLE>

< / H E A D > < B O D Y >

< P >

< H R >

<APPLET code = ohpub.class

archive = AmbrosiaSamples.jar

width = 200

height = 300>

< / A P P L E T >

< / H R >

< / B O D Y >

< / H T M L >

Listing 3: Setting up the client to verify a signed applet.
ambrosia[9]-> javakey -c OpenHorizon true

Created identity OpenHorizon[uninitialized][trusted]

ambrosia[10]-> javakey -ic OpenHorizon oh.cert

Imported certificate from oh.cert for OpenHorizon

Listing 4: Producing a Digital Signature.
1 import java.security

2 import java.security.interfaces

3 byte toBeSigned [];

4 byte signedData [];

5

6 // priv must be initialized with a copy of the

7 // private key. Not shown here.

8 PrivateKey priv;

9 Signature sig = Signature.getInstance(“DSA”);

1 0s i g . i n i t S i g n (p r i v) ;

1 1s i g . u p d a t e (t o B e S i g n e d) ;

1 2signedData = sig.sign();

Listing 5: Verifying the Digital Signature.
1 import java.security

2 import java.security.interfaces

3 byte toBeVerified [];

4 byte theSignature [];

5 boolean isValid;

6

7 // pub must be initialized with a copy of the

8 // public key. Not shown here.

9 PublicKey pub;

10 Signature sig = Signature.getInstance(“DSA”);

1 1s i g . i n i t V e r i f y (p u b) ;

1 2s i g . u p d a t e (t o B e V e r i f i e d) ;

1 3isValid = sig.verify(theSignature);

A Primer on Digital Signatures
Digital signatures are a cornerstone in JDK 1.1 security and applet signing. On the sending side,

the originator of the document (in this case the entire applet is treated as the data in the document)
prepares a digest of the document. Digests are one way functions. That is, knowing the digest, you
can not reproduce the original document. Furthermore, if you use a strong digest algorithm, the
chances of two documents producing the same digest are very low, particularly if the documents them-
selves are very similar. For example, if I have two texts as follows:

It is time for all good men to come to the aid of the party
and

It is time for all good men to come to the aid of their party

These two sentences will produce a different digest.
After you prepare the digest, you encrypt it with your private key. Then you send the original doc-

ument along with its encrypted digest. Anyone can view your document. Anyone can alter the docu-
ment too. Anyone can produce a digest for the altered document as well. But no one can reproduce
the encrypted digest. That is because the digest is encrypted with your private key which is known
only to you.

On the receiving side, the recipient takes the document you have sent and produces its own digest.
The recipient uses your public key to decrypt the digest you have sent. If the two digests (the one you
sent and the one computed by the recipient) are the same, then no one has altered the document. If
the two digests are different, then the document is corrupted and the recipient rejects it.

The most popular digest algorithms are Message Digest 5 (MD5) and the Secure Hash Algorithm
(SHA). With both of these algorithms, any message of any size digests to a few hundred bits. Hence,
the performance cost of signing a digest is the same regardless of the size of the message. Obviously
the larger the document, the longer it takes to compute the digest.

jmoreh@openhorizon.com

31VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

32 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Web-based distribution of applications
is a proven IT winner. Since the ascendance
of the browser, hundreds of success stories
have emerged surrounding the deployment
of Internet/Intranet applications. Many of
these, in one way or another, involve the
opening up of legacy applications and data
through distributed clients. According to
commonly cited figures, around 70 percent
of the world’s data and associated applica-
tions reside on mainframe platforms. It is,
t h e re f o re, not surprising that numero u s
products and frameworks have emerged
over the past year designed to integrate the
mainframe into the emerging world of Java
and distributed network technology.

Russ Bartels, Director of Mi d d l e w a re
Consulting Services for Hitachi Data Sys-
tems (HDS) regards the extension of the
mainframe into the object world as an
important IT trend. Hitachi Ltd., the parent
company and a major global mainframe
vendor, is developing object-oriented prod-
ucts to enable businesses to link electronic
commerce applications to existing applica-
tions and data residing on legacy computer
systems.

“Most of our clients that are developing
electronic commerce applications require
sophisticated, object-oriented solutions. As
the coordination of multiple applications
with legacy code and data becomes the
norm, the new technology will supercede
p revious approaches, such as simple
screen scraping,” said Bartels.

Over the past year, a number of compa-
nies have begun to offer products that pro-
vide a starting point for bringing the main-
frame into the Java universe (or vice versa
if you’re of the mainframe world). Products
have appeared that allow you to distribute
a robust GUI interface over the Internet

based upon your mainframe application.
Most importantly, they limit writing off the
huge investment you’ve made in your main-
frame as much as possible, evolving your
existing systems rather than re p l a c i n g
them.

The current offerings of mainframe/Java
technologies can be divided into two gener-
al classes:
• accessing mainframe applications

through the network
• accessing mainframe data and CICS trans-

actions as services from external applica-
tions

We will look at a few vendors offering
products in each space.

The ability to access mainframe applica-
tions over a network and through a GUI OS
has been around for some time through
technologies such as terminal emulation
and screen-scraping. It should come as no
surprise then that they were among the
first applications of the mainframe world to
move to Java.

Over the past year, products have
emerged that fit the traditional “screen-
scraping” model; products that allow you
to build thin Java clients by cutting and
pasting fields from existing character-based
host screens, and by mixing in GUI attribut-
es such as buttons, pull-downs, color, etc.
These technologies provide the low-cost
reach of a browser-based distributed client
and the benefits of GUI look and feel.

A product called Jacada fro m
C l i e n t / S e rver Technology (www. c s t . c o m)
automates the generation of thin Java
clients from host screens using a rules-
based technology called KnowlegeBase.
The rules engine is designed to recognize
patterns in the original host screen and

translate them into corresponding graphi-
cal objects.

“Java-based graphical clients deliver on
the promise of intuitive, easy user access,
without the complexity and cost of tradi-
tional client/server arc h i t e c t u res,” said
David Holmes, Vice President of Marketing
for CST, Inc. “The future is bright for orga-
nizations to reap huge returns from their
mainstay application investments.”

A recent offering from Advanced Tr a n s i-
tion Technologies (www.att-inc.com) called
ResQ!Net uses a patented technology to
build thin clients directly from the main-
frame datastream. Using the ResQ!Net
authoring tool, “ResQ!Net instantly
enhances the look and feel of host legacy
applications and is such a natural fit for the
NC that I won’t be surprised to see it ru n n i n g
on all IBM’s Network Station computers, as
well as NCs from other vendors,” To d re s
Yampel, President of AT2 commented.

The next generation of mainframe/Java
technology has already begun to appear. In
general, they are built around the External
Presentation Interface (EPI) and External
Call Interface (ECI) methods of accessing
CICS transactions.

The ECI allows a non-CICS application to
call a CICS program in a CICS server. These
calls can be either synchronous or asyn-
chronous, meaning that the application has
the option of maintaining control while
waiting for a return from the called CICS
program. ECI also allows for simultaneous
connection to multiple CICS servers from a
single application.

The EPI allows you to develop GUI front
ends for existing CICS transactions without
needing to modify the CICS. Applications
can use the EPI to communicate with a CICS
transaction and can exploit the presenta-
tion facilities of the client system to com-
municate with the end user. For example, if
an application receives input from an exter-
nal device such as a bar code reader, the
application can use the EPI to convert the
input into a 3270 data stream to start a CICS
transaction and pass the data to it. Output
from the CICS transaction is passed back

Using Java to move
mainframes into the future

Wrangling
Big Iro n

JAVA & BUSINESS

by Eric Lehrfeld

33VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

34 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

and converted into the normal data type
used by the application.

One product from IBM that takes advan-
tage of these interface methods is the CICS
Gateway for Java (h t t p : / / w w w. h u r s l e y.
i b m . c o m / c i c s / i n t e rn e t / c i c s g w 4 j / i n d e x . h t m l) .
The Gateway sits on the same processor as
the Web Server and routes ECI and EPI calls
made from Java through a CICS Client to the
desired CICS server applications; manages
the many communication links to the con-
nected browser or network computers; and
c o n t rols asynchronous conversations to
the CICS server systems.

Another product called Interspace from
P l a n e t Works (http://www. p l a n e t w. c o m)
supports calls to CICS through ECI and EPI.
Interspace can also serve as a generic
bridge between Java applications and vari-
ous mainframe messaging middleware ,
including Distributed CICS, Encina,
MQSeries, TOP END or TUXEDO.

“Interspace allows customers to inte-
grate the best of the old with the best of the
new and the best of the future. This means
that customers are not locked into a dead-
end solution, as they would be with a
screen scraper approach,” said John San-
toro, VP of Development for Planetworks.

Blue Lobster Software (http://www.
bluelobster.com) Mako Server allows you
to create CORBA interfaces to ECI, meaning

that Java calls to CICS can be made trans-
parently through an ORB. By using the
Mako server, applications can take advan-
tage of all the benefits of Java to CORBA
communication.

“Our customers want access to their
mainframe data without having to change
existing applications,” said Andrew Wilson,
Chief Architect at Blue Lobster Software.
“Our approach is to look at the Mainframe
as just another server. Using Java technolo-
gies, we can ensure cross-platform compat-
ibility. Using CORBA, we can take advantage
of its distributed object capabilities and its
inherent security benefits.”

Bartels’s group at HDS is developing
products and services focused on security,

wrapping of legacy applications and tools
that will enhance object request broker
products. Working with some of the ven-
dors mentioned, and developing new tools
as they go along, HDS seeks to make all this
meaningful to their clients. As an example,
he noted that their experience with home
banking for a major bank involved interfac-
ing with 15 different legacy applications or
data bases. To build a home banking capa-
bility rapidly, banks must be able to analyze
the existing code and develop quickly the
wrappers to link to the coordinating, object
oriented application. And home banking,
like many other industries, demands appli-
cations that are secure and fast.

Over the last twenty years, no platform
has a better track record for speed and
security than the mainframe (UNIX lovers,
please address angry responses to deny-
it@if-you-can.com). Now, Java, middleware
technologies and distributed architectures
promise to extend that record into a new
millenium.

About the Author
Eric Lehrfeld is Director of Business Development for
Random Walk Computing, Inc, (http://www.ran-
domwalk.com). You can reach Eric at lehrfeld@ran-
domwalk.com

1/2 Ad

“The ability to
access mainframe

applications over a
network and

through a GUI OS
has been around
for some time...”

“The ability to
access mainframe

applications over a
network and

through a GUI OS
has been around
for some time...”

lehrfeld@randomwalk.com

35VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

36 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Using Java in place of Perl, ksh and bash

Wr i t i n g
Unix
F i l t e r s
in Java

Wr i t i n g
Unix
F i l t e r s
in Java

JDJ FEAT U R E

by Kenneth J. Kranz

37VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Over the past year, it’s been difficult to
pick up a technical journal and not see
an article extolling Java’s usefulness
with regard to creating applets.

More recently, due in part to Sun’s “Java Everywhere” campaign,
we are beginning to see applications featuring server-side Java
(servlets) and imbedded Java devices (phones, light switches,
etc.), as well as large-scale standalone applications (Sun Java Serv-
er). What continues to be a seldom discussed subject is small-scale
standalone Java applications.

While there have been several major standalone Java applica-
tions released, many are geared toward the Internet. Some are even
more narrowly focused as Java development tools. What many of
these applications have in common is that they tend to be graphi-
cal in nature and are invoked via a wrapper function. These wrap-
per functions are typically written in shell or batch script. They
define the proper Java runtime environment and then invoke the
application.

What is missing today is the ability for non-Internet developers
to easily use Java in place of C or Perl to write standalone pro-
grams. This article will describe an automated method whereby
the necessary Java runtime environment can be set up prior to
invoking a Java application. With this environment, you can begin
to use Java in place of other languages (Korn shell, bash, Perl, etc.)
for your normal daily systems administration needs. These small
utilities can then be deployed into your system bin directory for all
to use.

For the purposes of this article, I assume that you have a good
understanding of client/server technologies, object-oriented pro-
graming and C/C++ as well as a basic understanding of the Unix
operating system and shell programming.

Clarification
It should be noted that several third-party Java compilers now

support “native” code generation. Namely, the compile process
generates an executable image that will run only on the target plat-
form, much like a C compiler generates a binary executable file. To
accomplish this, most compiler vendors are imbedding the Java
Virtual Machine (JVM) in the binary object. While this solves the
problem of a standalone application’s runtime environment, these
compilers are mostly limited to 95/NT platforms. This will be a suit-
able solution once these compilers are available on all platforms.
Until then we must make do with supplying our own runtime envi-
ronment.

The Goal
Our objective is to create a facility whereby we can write “Unix

type” filters in Java. For this discussion, we will be focusing on the
filter framework and not the filter applications themselves.

In general, a Unix filter is a process that reads standard input
(stdin), or a file, and writes to standard output (stdout), or a file, all
the while applying a filter algorithm to the input data. A filter can
be something simple like transforming all upper case letters to
lower or it can consist of complex mathematical formulations.

A good filter should support the following features:
1.Unix-style optional switches: a dash “-” followed by either a letter

or word
2. switches that can have other optional arguments: “-filename

foo.txt”
3.Redirection and pipes, optionally
4.systematic error checking on all switch settings.
5.Be cross-platform compatible
6.Once installed in the system bin directory, the ability to be

invoked directly by entering the name of the filter at the com-
mand prompt.

To achieve these goals we must develop two distinct entities:
1.A standardized Java front-end for processing filter switch set-

tings

38 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

2. A standardized script front-end for creating the necessary run-
time environment for a given filter

Additionally, a method whereby the wrapper script is married
to the application filter in an automated process would help to sim-
plify the make process.

Java Filter Front-End
For our discussions, the front-end filter process will be designed

to read switch settings, detect user input errors and display on-line
help. More importantly, it will also invoke the core program logic.
Listing 1, Java Filter Front-End, depicts just such a program. This
program consists of the following sections:
1.Main function declaration – Necessary for all standalone Java

programs.
2.Switch parsing section – Two switches

are defined by default: verbose and help
3.On-line help – If the help option is spec-

ified, a detailed usage message will be
displayed.

4.Error handler – If an illegal or mal-
formed switch is set, the error handler
will display a message and terminate.

5.Application code – Once all switches are
successfully processed, norm a l / c o re
execution can be resumed.

With this simple template file, we now
have the structure necessary to support
most of the desired functionality – namely,
five of the six features of a standalone fil-
ter. By modifying this structure we can eas-
ily support additional switch settings, input
and output arguments.

Unfortunately, this template program is not sufficient to solve
the sixth requirement: “direct invocation of the target program
from the command line.” To achieve this last requirement, we need
to resort to a wrapper script.

Invoking a Standalone Java Program
All Java programs must be invoked via the Java Virtual Machine.

Java programs cannot be invoked directly – as is the case for C/C++
programs, batch files, or script files. There is no equivalent of a
magic cookie (e.g., #!/usr/Java/bin) for a Java program. Trying to
execute a Java program by typing the class name will not work, nor
will making the class file executable.

To run your program, you must make sure that the Java Virtual
Machine can find your class file. This can be done in several ways:
setting the CLASSPATH variable, starting the JVM from the same
directory as your .class file, etc.
Example 1:

> export CLASSPATH =

/ u s r / l o c a l / J a v a b i n : $ C L A S S P A T H

> Java /usr/local/Javabin/MyApp

Example 2:

> cd /usr/local/Javabin

Java MyApp

Either of the above methods will ensure that the Java Virtual
Machine can find the target class file.

If your Java program relies on other class definitions then you
must specify the path to the other class files too. Again assuming

the current CLASSPATH definition does not contain the necessary
path information, you must specify the proper path spec during
invocation. For example:

> Java -classpath

/ u s r / l o c a l / J a v a b i n :

~/Javabin:$CLASSPATH

M y A p p

Since our goal is to make your Java application easy for others
to use, we must wrap all of the aforementioned constraints into an
easy to use package. The end user should not have to type any-
thing more than “MyApp” to invoke your application. The remain-
der of this article will address just how this can be accomplished.

Wrapper Script
The wrapper script (Listing 2)

depicts a shell script designed to
invoke your Java applications for you.
The purpose of the wrapper script is
to simplify the process of invoking
your Java Applications to the point
where you only need enter the pro-
gram name along with any application
specific parameters.

L e t ’s review exactly what this
script does:
• Line 1: Magic cookie: Ensures that
the script’s contents can be interpret-
ed no matter what the current shell
environment is set to.
• Line 2: Isolates the target program

name from the invocation path. This
allows the script to be called relatively, absolutely or via the
PATH environment variable. Example:

. . / . . / m y B i n / M y A p p

/ h o m e / k k r a n z / m y B i n / M y A p p

M y A p p

• Line 3: Separates the invocation path (e.g. ../../myBin/) from the
full path to the script (/home/kkranz/myBin)

• Line 4: Assumes that the .class file and the script file are named
the same: MyApp.ksh, vs. MyApp.Java, vs. and MyApp.class

• Line 6: Computes the absolute path to the script (and presum-
ably to the .class file – assuming that the script and class files are
in the same directory)

• Line 8: Switches to the script’s bin directory
• Lines 10-13: Looks for a .class file named after the script file in the

class directory. If there is no .class file the script aborts.
• Line 15: Adds the script’s bin directory to the CLASSPATH envi-

ronment variable. An acceptable alternative would have been to
pass this information via the -classpath option to the Java Virtu-
al Machine. Either method is acceptable.

• Line 17: Invokes the Java Virtual Machine with the base name of
the script as the first argument and any remaining options as the
remainder of the line.

With the use of the wrapper script in Listing 3, you can make it
very easy to invoke your Java applications, regardless of what the
installation directory is. The only implementation criteria that
must be met to use this script are:
1.You must use the same name for the script file as you do for the

.class file.
2. The script file and the .class file must reside in the same bin

“With this

environment, you

can begin to use

Java in place of

other languages...”

39VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

40 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

directory, although you could easily modify the script to allow
the script files to reside in one directory and the .class files to
reside in a separate class bin directory.

3.The script file must reside in a directory defined by the PATH
variable.

4.Other .class files that are accessed at run-time must be in a direc-
tory defined by the CLASSPATH environment variable or in a
script directory.

Generating the Wrapper Script
So far, we have described a template Java application program

and wrapper script that can be used to write standalone Java pro-
grams.The final step is to write a program that can generate a wrap-
per script for a given standalone Java program.

The Java Compiler script (Jcc, Listing 3) performs the following
basic functions:
1. Invokes the Java compiler to create the .class file from your

source
2.Invokes Javadoc, to create html based documentation files
3.Creates a wrapper script tailored toward invoking your Java

application
4.Creates a manual page for your application

Using the Java Compiler script is not mandatory. Its purpose is
to simplify the process whereby your Java program and its associ-
ated files are generated. Listing 4, Example Makefile, demonstrates
how the Jcc would be used in a Unix-style makefile.

Conclusion
If you are a systems administrator and are otherwise not

involved in the Internet, you do not have to feel left out of the Java
learning curve. By using this wrapper script you can begin to use
Java in places where you would have traditionally used Perl, C or a
shell language. Given Java’s rapid growth, it is very likely that it will
become a standard feature on most future operating systems. By
learning and using Java now, you will help prepare yourself for that
time.

About the Author
Ken Kranz is the Director of Internet Services for Interaxis Corporation, a develop-
er of database-driven Web sites. He can be reached at kkranz@ebbtide.com. This
and the expanded source code used in this article can be found at
www.ebbtide.com/UnixFilters.

Listing 1: Java Filter Front-End.
import Java.util.*;

class MyApp {

public static void main(String args[]) {

int verboseLevel = 0 ;

boolean helpFlag = false;

String usage = "-v[erbose] -h[elp]";

int ArgSpec= 1; // minimum number of expected arguments

int switchCount= 0; // number of switches found

boolean CLIError = false; // user invocation error

for (int i=0; i < args.length; i++) {

if (args[i].equals("-verbose") || args[i].equals("-v")) {

v e r b o s e L e v e l + + ;

s w i t c h C o u n t + + ;

} else if (args[i].equals("-help") || args[i].equals("-h")) {

helpFlag = true;

s w i t c h C o u n t + + ;

} else if (args[i].startsWith("-", 0)) {

System.err.println("Illegal switch: " + args[i]);

CLIError = true;

s w i t c h C o u n t + + ;

}

}

if (helpFlag) {

System.out.println("" +

" -v[erbose] Increase verboseness level\n" +

" -h[elp]Display this on-line help message\n");

System.err.println("Usage: " + usage);

S y s t e m . e x i t (0) ;

}

int totalArgs = args.length - switchCount;

int firstArgOff= switchCount;

if (ArgSpec != totalArgs) {

System.err.println(totalArgs + " arguments found " +

ArgSpec + " expected\n");

System.err.println("Usage: " + usage);

S y s t e m . e x i t (1) ;

} else if (CLIError) {

System.err.println("Invalid/illegal switches encountered");

System.err.println("Usage: " + usage);

S y s t e m . e x i t (2) ;

}

/ * /

* *Place your application code here**/

/**/

}

}

Listing 2: Wrapper Script
1 #!/sbin/ksh # magic cookie

2 BASENAME=$(basename $0) # eg: MyApp

3 ME=$(whence $0) # eg: /usr/local/bin/MyApp

4 CLASS=${BASENAME}.class # eg: MyApp.class

5

6 PATH2ME=$(dirname $ME) # eg: /usr/local/bin

7

8 cd $PATH2ME # go to the bin directory

9

10 if [[! -a $CLASS]]; then

11echo "$BASENAME: unable to locate target: $CLASS" >&2

12exit 1

13 fi

14

15 export CLASSPATH=$PATH2ME:$CLASSPATH

16

17 Java $BASENAME $@ # invoke the application

Listing 3: Java Compiler (JCC).
! / u s r / b i n / k s h

initialize shell overhead variables

BASENAME=$(basename $0)

USAGE="USAGE: $BASENAME [-c] [-d] [-s] [-o string] [-p CLASSPATH]

[-m] \

[-v [-v]] [-h] filename[.Java]"

((ARG_COUNT = 1))# This nubmer must reflect true argument count

((OPT_FLAG = 0)) # Command line mistake flag

((OPT_COUNT = 0))# Number of options on the command line

kkranz@ebbtide.com

41VOLUME: 2 ISSUE: 12 •h t t p: //w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

42 • VOLUME: 2 ISSUE: 12 h t t p: //w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

((HELP_FLAG = 0))# Default: no help required

((WARNING = 0)) # General purpose no fail warning flag

((JAVAC = 1)) # call the compiler

((JAVADOC = 1)) # call Javadoc

((SCRIPT= 1))# generate the script

((PATH_OPT= 0)) # extend the CLASSPATH switch

J A V A O P T S = " " # default Java compile options

P A T H _ O P T _ V A L = " " # default extended CLASSPATH

if [[$VERBOSE_FLAG = ""]]; then

((VERBOSE_FLAG= 0)) # Default: no verbose

f i

Parse command line options

while getopts :p:cdso:hv arguments

d o

case $arguments in

p)((PATH_OPT = 1)) # extend the CLASSPATH

P A T H _ O P T _ V A L = $ O P T A R G ; ;

s)((SCRIPT= 0));; # generate script (& man page)

c)((JAVAC = 0));; # compile the Java program

d)((JAVADOC = 0));; # create the Java Documenta-

t i o n

o) J A V A O P T S = $ O P T A R G ; ; # read compile switches

v)((VERBOSE_FLAG = VERBOSE_FLAG + 1))

if ((VERBOSE_FLAG > 1)); then

vbs=" -verbose "

f i

; ;

h)((HELP_FLAG = 1));; # display help

\?) echo "Illegal switch: $OPTARG" # flag illegal switch

((OPT_FLAG = 1));;

e s a c

d o n e

((OPT_COUNT = OPTIND - 1))

shift $OPT_COUNT

check for help

if (($HELP_FLAG == 1)); then

echo " Usage: $USAGE"

echo " -c Do not compile the target file"

echo " -d No not create Java Documents"

echo " -h Display this help message"

echo " -o string Javac compiler options"

echo " -p string Extend the CLASSPATH"

echo " -s No not create the front-end script"

echo " -v Display status information during execution"

exit 0

f i

check for illegal switches

if (($OPT_FLAG == 1)); then

echo "$BASENAME: Illegal or invalid switche(s) encountered"

echo "Usage: $USAGE"

exit -1

elif (($# != $ARG_COUNT)); then

echo "$BASENAME: $# arguments found, at least $ARG_COUNT expect-

e d . "

echo "Usage: $USAGE"

exit -1

f i

reset umask to all files are rw-able

umask 000

dir=$(echo $1 | dirname)

target_basename=$(basename $1)

target=$(echo $target_basename | cut -d\. -f1)

ext=$(echo $target_basename | cut -d\. -f2)

if [[$ext = $target]]; then

assume .Java

e x t = " J a v a "

elif [[$ext != "Java"]]; then

echo "$BASENAME: invalid extension"

exit 1

f i

s o u r c e = $ { t a r g e t } . J a v a # a.k.a MyApp.Java

c l a s s = $ { t a r g e t } . c l a s s # a.k.a MyApp.class

h t m l = $ { t a r g e t } . h t m l # a.k.a MyApp.html

s c r i p t = $ { t a r g e t } # a.k.a MyApp

m a n p a g e = $ { t a r g e t } . 1 # a.k.a MyApp.1

compile program to create target.class from target.Java

if ((JAVAC)); then

if ((VERBOSE_FLAG)); then

echo "$BASENAME: Javac $JAVAOPTS $vbs ${source}"

f i

Javac $JAVAOPTS $vbs ${source}

s t a t u s = $?

if ((status != 0)); then

echo "$BASENAME: Java compiler error: $status"

exit $status

f i

f i

create the target.html file

if ((JAVADOC)); then

if ((VERBOSE_FLAG)); then

echo "$BASENAME: Javadoc $vbs ${source}"

f i

Javadoc $vbs ${source}

f i

if the script section is not selected then terminate

if ((! SCRIPT)); then

exit 0

f i

otherwise create the shell script that will invoke the .class

f i l e

if ((VERBOSE_FLAG)); then

echo "$BASENAME: creating $script"

f i

remove the old "executable" version and man page

rm -f $script $manpage

insert magic cookie and set debug flags (if required)

ShellPath="$(which ksh)"

j a r = $?

if ((jar != 0)); then

echo $COOKIE

echo "$BASENAME: Error: Unable to determine magic cookie, abort-

i n g . . . "

exit 1

f i

create the execut script

COOKIE="$ShellPath $StartFlag"

echo "#!$COOKIE${SHDEBUG}" > $script

echo "BASENAME=\$(basename \$0) " > >

$ s c r i p t

echo "ME=\$(whence \$0) " > >

$ s c r i p t

echo "TARGET=\${BASENAME}.class " > >

$ s c r i p t

43VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

44 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

echo "" >> $script

echo "PATH2ME=\$(dirname \$ME) " > >

$ s c r i p t

echo "" >> $script

echo "cd \$PATH2ME "

>> $script

echo "" >> $script

echo "if [[! -a \$TARGET]]; then " > >

$ s c r i p t

echo " echo \"\$BASENAME: unable to locate target: \$TARGET\" >&2

" >> $script

echo " exit 1 " >> $script

echo "fi " >> $script

echo " " >> $script

echo "export CLASSPATH=\$PATH2ME:\$CLASSPATH " > >

$ s c r i p t

if ((PATH_OPT)); then

echo "export CLASSPATH=$PATH_OPT_VAL:\$CLASSPATH " > >

$ s c r i p t

f i

echo "" >> $script

echo "" >> $script

echo "Java \$BASENAME \$@ " > >

$ s c r i p t

create a dummy man page file

if ((VERBOSE_FLAG)); then

echo "$BASENAME: creating $manpage"

f i

echo "" >> $manpage

echo "${target} is a front-end to the Java application

${target}.class" \

>> $manpage

echo "please see ${target}.html for more details."\

>> $manpage

echo "" >> $manpage

echo "For details regarding Java script wrappers please see $BASE-

NAME" \

>> $manpage

echo "" >> $manpage

make the script executable

chmod a+rx $script

Listing 4: Example Makefile.
B I N = / u s r / l o c a l / J a v a b i n

M A N B I N = / u s r / s h a r e / m a n / c a t 1 /

H T M L B I N = / u s r / p e o p l e / k k r a n z / w w w / h t d o c s / M a n P a g e s

MyApp.class: MyApp.Java

jcc -v MyApp

i n s t a l l :

cp -p MyApp $(BIN)

cp -p MyApp.class $(BIN)

cp -p MyApp.1 $(MANBIN)

cp -p MyApp.html $(HTMLBIN)

1/2 Ad

45VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

46 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

With industry momentum behind the
development of powerful tools and diverse
components, the JavaBean component mar-
ket is growing rapidly. It is important to pro-
mote commercial quality JavaBeans compo-
nents and tools; namely, components that
can be used and reused by diff e rent users in
d i ff e rent tools, can interoperate with other
components from other vendors and are
robust and functionally complete.

A JavaBean component, or simply a
Bean, is a platform-neutral component
a rc h i t e c t u re that extends Java's “Wr i t e
Once, Run Anywhere”™ capability. With
tools like Sun Microsystems’ Java Studio,
developers can easily create reusable Jav-
aBeans components that can be reassem-
bled to create a wide variety of applications
from spreadsheets to chat programs.

Following are some guidelines for Java
Beans component developers to help
ensure that the maximum level of compo-
nent reuse is achieved.

New Beans from Old Beans
JavaBean components are intended to

be reused. An end-user uses a Bean within a
JavaBeans-compliant tool. Some develop-
ers may want to create new JavaBeans com-
ponents by using an already existing Bean.
The JavaBean component architecture pro-
vides some mechanisms for this purpose
that need to be taken into consideration:
• A new JavaBeans component can be cre-

ated by customizing a Bean through the
manipulation of its properties, or through
a Customizer, and then serializing the
Bean.

• The functionality of a Bean can be
exposed in new ways by providing a new
Customizer targeted to a different audi-
ence.

• A new Bean can be created by subclass-
ing an existing Bean.

Keeping the Next User in Mind
When creating Beans, consider how

BeanInfo, Bean properties and Customizers
will help the next user understand the Bean
and how it functions.

BeanInfo
Each Bean may have a BeanInfo class

which is defined by the creator of the Bean.
The BeanInfo class lets the application con-
struction tools uncover information that
the creator specifies about the bean, mak-
ing it possible to hook up bean components
through a visual programming paradigm.
The creator of the Bean has complete con-
trol over how the Bean is presented to pro-
grammers inside these application
builders.

Tips for creating BeanInfo:
• Decide whether each feature (method,

event or property) should be exposed at
all to Bean users, and if so whether it
should be marked as hidden or expert.
Not everything inherited in implementing
a Bean should necessarily be exposed.

• Provide a display name for the feature.
Note that, for localization purposes, this
name should be extracted from a
resource bundle

• P rovide quality iconic re p re s e n t a t i o n s .
This makes the Bean easier to use and
m o re recognizable within the builder
tool.

Properties
For some important Bean properties it

may be useful for the Bean developer to
define events that are fired when that prop-
erty changes in some specific way. A spe-
cial example of this is a bound property, but
other events may be fired as well. When the
value of one Bean's property should be
extended to a property on another Bean,
that is a bound property. For example, on a
slider that is moving between two values,
treat the current value as a bound property
because turning a slide movement on a slid-
er Bean into a setFoo on a target Bean is a
convenient user model.

Not all properties should be made avail-
able as a bound property but consider
whether or not some useful properties of
the Bean are to be made bound. For exam-
ple, a button might be made bound for its
font size and type and background and fore-
ground colors.

Another example of useful bound pro p e r-
ty for a JavaBeans component is its intern a-
tionalization locale: Changing the locale is
likely to be of interest to other components

that are interacting with this component.
The JavaBean component architecture

provides support for both constrained and
bound properties. This support is orthogo-
nal so that it is possible to have a property
that is constrained but not bound. In prac-
tice, Beans that export a property as con-
strained should also export it as a bound
property; then listeners would register for
both notifications. This allows a simple
two-phase protocol for reacting to changes
in one such property. When a property is
about to change the listener is invoked
through VetoableChangeListener and given
an opportunity to veto the pro p o s e d
change. When the change has actually hap-
pened, the (same) listener is invoked
through PropertyChangeListener and the
listener can react to the change.

Customizers
A Bean may need to be represented in a

specific manner to users or may need to be
configured in a certain sequence. Builder
tools have no advance knowledge of this.
By providing a Customizer the developer
can address these situations. The Cus-
tomizer has full access to the Bean and is
normally packaged with the Bean. The Cus-
tomizer can be a full-fledged JavaBeans
component itself. A Customizer can set a
private state of the Bean to which the prop-
erty sheet and methods and events do not
have access. Customizers do not override
property editors. By using BeanInfo it is
possible to associate property editors with
Customizers.

A Customizer can encapsulate deep
expertise on the use of a component, and a
Customizer can be delivered independently
of the Bean itself. Some JavaBeans compo-
nents may even want to include different
Customizers to address the needs of differ-
ent customers’ backgrounds, markets and
level of sophistication.

Through careful consideration of these
Bean characteristics, a JavaBean compo-
nent developer secures a future in the
emerging network software market without
losing customers who use proprietary sys-
tems. By maximizing component reuse, a
developer can also quickly attack new mar-
ket opportunities and new ways to sell
smaller packages of software.

About the Authors
Laurence P.G. Cable and Eduardo Pelegri-
Llopart work for Sun Microsystems, Inc.

ANYTHING NEW UNDER THE SUN

Ja va Bean
Component Re u s e

47VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

48 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

You spend weeks, months,
maybe years developing
your application. Yo u r
testing phase is going
well and you’re almost
ready to begin thinking

about your deployment
phase. Just when you think it’s

safe to breathe again, you’re faced with the
daunting task of deploying your application
on the desktops of thousands of users. If
your application is for the commercial mar-
ket, then you have no idea how many users
you will need to deploy it to. You need an
easy, fail-safe way to get your application
installed. Have no fear, InstallShield
Express is here!

What is InstallShield Express?
InstallShield Express 2 is the first com-

pletely visual installation development sys-
tem. Built on the technology of Install-
Shield, the world’s most reliable software
for Windows installation, it provides auto-
matic support for more visual development
environments than any other program, so
developers can quickly and easily deploy
the components their applications require.
With InstallShield Express 2, developers
can create Windows 95/NT logo-compliant
installations in less than 10 minutes. No
m o re frustrating days of grappling with
Install Builder.

Setup Checklist
InstallShield Express’ main screen is the

setup checklist. It is from this screen that
you will create every piece of your installa-
tion. Each step is logically organized in nine
easy steps. I will briefly explain each step.

Set the Visual Design
This is where you define application

i n f o rmation such as your application’s
name and version number. You can also
define certain features of your installation

routine such as your target platform
(InstallShield Express supports both 16 and
32 bit platforms).

Specify Components and Files in
Planning your Installation

Before you actually begin using Install-
Shield Express, it’s a good idea to organize
all the files you will need on paper and orga-
nize them into groups, components and
setup types. Groups, components and
setup types provide the framework for
copying your files. Groups are a collection
of files such as readme, help and tutorial
files. Groups can then be assigned to com-
ponents in which the readme, help and
tutorial files group would be assigned to
the Help Docs component. Setup types are
usually typical, compact and custom. If you
are offering multiple setup types, you will
specify which components are included
with each setup type. If you are not offering
multiple setup types, you don’t even need

to worry about components.
As you can see, creating your installa-

tion takes careful planning. Believe me, a
well thought out plan will save you a lot of
time when creating your installation. This
p o rtion took the most time for me. I did
not pre p a re ahead of time and spent more
time than necessary on this step. N o t e : Yo u
can open Windows Explorer from this sec-
tion and drag and drop files from explore r
to your gro u p s .

Select User Interface Components
This is the fun part. Here is where you

design the GUI portion of your installation.
You have 13 diff e rent dialog boxes to

An amazingly easy and fun way to get
your application installed!

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
InstallShield 2 Express
InstallShield Software Corporation
900 National Pky., Ste: 125
Schaumburg, IL 60173-5108
Phone: 800 374-4353 Fax: 847 240-9120
Web: www.installshield.com
Email: sales@installshield.com
Requirements: Windows 95 or NT or higher;
10M disk space, VGA monitor or better.
Price: $245.

InstallShield Expre s s 2
by InstallShield Software Corp .

PRODUCT REVIEW

by Jason Cohen

Figure 1:Setup Checklist Screen

49VOLUME: 2 ISSUE: 11 •h t t p: //w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

50 • VOLUME: 2 ISSUE: 12 h t t p: //w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

choose from. Some options are a welcome
message, software license agreement and
a pro g ress indicator. Before there was
InstallShield Express, I spent hours with
InstallShield 3, which comes with its own
scripting language and is the only way to
c reate an installation. With InstallShield
E x p ress, all I have to do is point and click
on the dialog boxes I want and I’m done.
This feature alone is well worth the cost of
the pro d u c t .

Make System File Changes
If you’re building an installation for a

16-bit application, you will need to use this
section. Here is where you will define any
.INI file settings that need to be modified
or updated. You can also make changes or
add to your autoexec.bat and config.sys
files as well.

Make Registry Changes
If you’re building an installation for a 32-

bit application you will need to use this sec-
tion. Here is where you will define any reg-
istry settings that need to be inserted or
updated. InstallShield Express automatical-
ly makes the necessary registry entries to
enable uninstallation.

Specify Folders and Icons
This dialog allows you to specify the

icons you want to place in your applica-
tion’s folder and define the initial size of
your application’s window. You can also
select an alternate working dire c t o ry,
choose an image from a separate resource,
specify a shortcut key or place an icon in a
specified folder.

Run Disk Builder
All the hard work has been done and

you’re ready to create the disk images. With
one click of a button InstallShield Express
will verify that all of your settings are cor-
rect, compress your files and cre a t e
diskette images. You have many options for
disk size such as: 1.44mb, CD-ROM
(includes an option for autorun) and
120MB. I have to say the compression rou-
tine is excellent. InstallShield Express creat-
ed one less diskette than my original Install
Builder installation.

Test the Installation
It is a good idea to test your installation

routine before giving it to your users or cus-
tomers. By clicking on this option, Install-
Shield Express will take you through a dry

run of your installation using all the set-
tings you previously defined. Be careful
here; it will actually make your .INI or reg-
istry modifications that you specified.

Create Distribution Media
Once you are satisfied with your instal-

lation, you can copy the diskette images to
floppy. You have the choice of copying all
diskettes or only the ones you choose.

Summary
I can’t say enough about this amazingly

easy and fun product. I am now able to
sleep at night knowing my customers are
not going to be calling me with problems
installing my application. There was one
bug in creating a 16-bit target platform
installation: At the end of the installation it
would GPF. This was fixed with InstallShield
Express 2.01. I was able to download the
upgrade over the Internet. You can down-
load a full working demo of InstallShield
E x p ress at http://www. i n s t a l l s h i e l d . c o m /
e x p ress www. i n s t a l l s h i e l d . c o m / e x p ress. I
was very pleased with their technical sup-
port as well. They were very responsive to
my e-mail questions, and their news server
on the Internet was also very helpful. I high-
ly recommend this product to anyone who
needs to create an installation routine for
their application.

About the Author
Jason Cohen is Director of Technology at WEBS-
PEDiTE, Inc, a consulting and development company
specializing in Object-Oriented Analysis and Design
and developing N-Tier systems using PowerBuilder.
Jason is currently assisting an insurance firm re-archi-
tect their current two-tier client/server systems into an
object based, N-Tier environment. He also teaches
PowerBuilder at the University of South Florida.

Figure 2:Specify Components and Files

Figure 3: Select User Interface Components

jason@webspedite.com

51VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

52 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Any software system, whether object-ori-
ented or not, relies on the state of the sys-
tem being “correct” at certain stages of its
execution. To take a very simple example,
when a numerical division operation is per-
f o rmed, the divisor must be non-zero. If this
is not the case, the system may crash in an
u n p redictable and uncontrolled manner.

One way of indicating such re q u i re m e n t s
is to state that the system must be in some
state either before or after an operation.
Such a statement about the state of a soft-
w a re system is called an assert i o n .

A s s e rtions often form the basis for soft-
w a re specification. In some systems, the
a s s e rtions are embedded in the software as
annotations or formal comments. However,
it can be useful to make the assertions exe-
cutable so that the correctness of the sys-
tem is checked at ru n t i m e .

A simple technique is to make the code
do its own self-testing using a method call
and a programming languages exception
mechanism. The code checks that the state-
ment passed to it is true, thus allowing it to
test that the code is behaving as expected.
If the statement is false, the method uses an
exception to stop processing, there b y
enabling debugging.

This article looks at how assertions can
be implemented within the Java pro g r a m-
ming language [1]. In the remainder of this
a rticle, we introduce the concept of asser-
tions, how they can be used and how they
can be implemented. In part i c u l a r, we intro-
duce two types of assertions: one which gen-
erates a runtime exception if it fails and one
which generates a checked exception (which
must be handled by the programmer) if it
fails. We then provide a brief analysis of the
facilities provided by this appro a c h .

Assertions and Their Uses
An assertion is a logical statement about

the state of a software system. In form a l
methods, such as VDM [10], software is
specified by making assertions about the
p re- and post-conditions of functions and
operations. These assertions may be used
to formally prove pro p e rties of the system,
such as consistency. During the develop-
ment process, the abstract specification is
refined into code. The problem with this
a p p roach is that the assertions used in the
specification are often lost during the re f i n e-
ment process and indeed, it may not be pos-
sible to express the assertions in the final
implementation language.

P rogramming languages have been
developed which enable assertions to be
embedded into the code itself, for example
Gypsy [5] or SPARK [3, 2]. Tools available
with these language systems enable the
a s s e rtions to be checked and, in some
cases, pro v e d .

Another approach is to introduce asser-
tions into existing programming languages
by using formal comments, called annota-
tions, or by pre - p rocessing. The C pro g r a m-
ming language has been extended with
annotations[7] and Ada has been similarly
extended into Anna [11]. An annotation pre -
p rocessor for C is described in Rosenblum’s
“A Practical Approach to Programing with
A s s e rt i o n s” [13]. In these systems, tool sup-
p o rt enables the assertions to be checked
against the program code. However, extra-
language syntax is re q u i red and, in the case
of annotations, the assertions are lost when
the program is compiled.

It may be better to have assertions as
p a rt of the code so that they provide a per-
manent defensive programming mechanism
for detecting faults at runtime [12]. The
exception mechanism of a pro g r a m m i n g
language can be used for this [8]. In the fol-
lowing sections we show how this can be
done for Java.

Using Assertions in Java
A s s e rtions can be implemented in Java as

p a rt of an assertion package (available at
h t t p : / / w w w. a b e r. a c . u k / ~ j j h / J a v a / a s s e rt i o n) .
This package can provide assertion classes
which take an assertion and throw an excep-
tion if the assertion is false. The package
could also define its own exceptions, there-
by allowing a programmer to catch assert i o n
exceptions. The assertion package we have
defined provides two separate assert i o n
classes and two diff e rent types of exception:
• A s s e rtion – The class Assertion allows

p rogrammers to use assertions within
their code.

• C h e c k e d A s s e rtion – The class
C h e c k e d A s s e rtion allows programmers to
use assertions within their code but
f o rces them to explicitly catch a
C h e c k e d A s s e rt i o n E x c e p t i o n .

• A s s e rtionException – The Assert i o n E x-
ception class extends the RuntimeExcep-
tion class so that programmers do not
have to handle the exception raised.

• C h e c k e d A s s e rtionException – T h e
C h e c k e d A s s e rtionException class
extends the Exception class so that pro-
grammers are forced to handle the excep-
tion raised.

The diff e rence between the checked and
the non-checked assertions for the develop-
er is that they must explicitly handle any
exceptions raised by the CheckedAssert i o n
class, whereas they can choose to ignore
the fact that an exception may be raised by
the Assertion class.

In Java, a package is an associated gro u p
of classes and interfaces [1]. We have defined
a new package assertion which holds the
four classes listed above. Other classes can
then use these four by importing the asser-
tion package. An example of how these class-
es are used is presented in Listing 1.

This example creates a simple class
Example which uses the Assertion class to
handle the result of checking the re l a t i o n-
ship between a and b. The result of ru n n i n g
this application is presented in Listing 2.

We could have caught the Assert i o n E x-
ception within a try{} catch{} block. This
c o n s t ruct allows a piece of code to be
wrapped up within a try block. The try
block indicates the code which is to be mon-

Implementing
A s s e rtions in Java

Providing greater control
and “self-documentation”

PROGRAMMING TIPS

by John Hunt & Fred Long

53VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

i t o red for the exceptions listed in the catch
e x p ressions. The catch expressions can
then be used to indicate what to do when
c e rtain classes of exception occur; for
example, “resolve the problem” or “gener-
ate a warning message”, etc. If no catch
e x p ressions are included the throws clause
must be handled by the method definition.
For example:

try { e.test(1, 2);

e.test(2, 1);

}

catch (AssertionException e) {

System.out.println("First parameter larger

than second");

}

This would have allowed us to respond in
an appropriate manner. Below we examine
the implementation of the Assertion and
A s s e rtionException classes and their
checked counterpart s .

Exceptions in Java
In Java, (almost) everything is an object;

t h e re f o re, exceptions are objects as well. All
exceptions must extend the class Thro w-
able or one of its subclasses [4].

The class Throwable has two subclasses,
E rror and Exception. Errors are unchecked
exceptions. These are exceptions which
your methods are not expected to deal with.
The compiler there f o re does not check that
the methods can deal with them. In contrast,
most exceptions (but not RuntimeException
and its subclasses) below the class Excep-
tion are checked exceptions. These excep-
tions must be dealt with by your methods.
The compiler thus checks to see that meth-
ods throw only exceptions which they can
deal with (or are passed up to other meth-
ods to handle). For example, if we wished to
raise an ArithmeticException, for a divide by
z e ro error then we would write:

throw new ArithmeticException("Division By

Z e r o ") ;

In Java, you are not limited to system-pro-
vided exceptions; it is also possible to pro-
vide user-defined exceptions. This can be
v e ry useful as such an approach can allow
the developer to have more control over
what happens in particular circ u m s t a n c e s .
To do so, a developer must subclass the
Exception class or one of its subclasses.

Assertions in Java
The Assertion class

The Assertion class (a direct subclass of
Object) makes two methods publicly avail-
able for handling boolean expre s s i o n s .
These are :
• assert(boolean bool) – Determines the

effect of the boolean result passed to it.
• assert(boolean bools[]) – Determines the

effect of the array of expressions passed
to it.

The second method is really a convenience
method which repeatedly calls the first
method on each element in the arr a y.

The implementation of the assert (b o o l e a n
bool) method is relatively straightforw a rd .
The method checks whether the boolean
value is false or not. If it is false an exception
is raised. The assert(boolean bools [])
method simply calls the previous method
iteratively (see Listing 3).

Switching Assertion Checking Off
In the released version of the system, the

a s s e rtion checks may waste pro c e s s i n g
time. They could there f o re be replaced by a
null version of the method:

public static void assert (boolean bool)

throws AssertionException {

return true;

}

As Java dynamically loads the appro p r i-
ate .class file at runtime, we could distribute
the final version of the system with an
A s s e rtion.class file based on the above
implementation of assert. We would there-
f o re not even need to recompile the system
being re l e a s e d .

The overhead of the extra method dis-
patch is relatively small; of course, if it is
still significant we could write a utility to
find the senders of the assert method and to
comment out the assertion statements.
The AssertionException class

The AssertionException class is a sub-
class of the RuntimeException class as illus-
trated in Figure 1. The definition of the
A s s e rtionException class is provided in LIst-
ing 4. Note that it provides two constru c t o r s
which are used to initialize the string dis-
played to the user.
C h e c k e d A s s e rtion and CheckedAsser -

t i o n E x c e p t i o n
These classes are essentially the same as

the Assertion and AssertionException classes
except that the CheckedAssertion class
t h rows the CheckedAssertionException and
the CheckedAssertionException extends the
Exception class (as shown in Figure 1). For
the developer, the diff e rence between the two
types of assertion checking is that any excep-
tions raised by the CheckedAssertion class
must be handled explicitly; they can not sim-
ply be propagated out of the pro g r a m .

The advantage is that the developer
using the assertions can decide how much
c o n t rol to give to the user of a component.
If they wish, they can force that user to han-
dle the exception and thereby allow them to
take charge of any problems which occur.
This can result in code which is more
resilient to erroneous situations.

For completeness, the two classes are
p resented in Listings 5 and 6.

Analysis
Design methods Using Assert i o n s

A s s e rtions are particularly useful for
testing pre-conditions, post-conditions and
class invariants. The Syntropy design
method makes extensive use of such asser-
tions [6]. It would there f o re be possible to
use the assertions identified during the
design as the basis of the assertions to
place in the Java code.

JavaBeans™
The use of assertions could be extre m e-

ly useful when working with JavaBeans (the
Java component model). In such situations
developers produce reusable components
which will be used by developers in many
d i ff e rent ways. By using assertions, devel-
opers can ensure that the state of the Bean
at any time is correct. If the state is not cor-
rect then they can take appropriate action.
The assertions can there f o re be used as
g u a rds against inappropriate states, para-
meters, etc.

Figure 1 : The assertion exception hierarchy

54 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Advertiser Page
3D Graphics 31
www.threedgraphics.com 310 553-3313

Activerse 17
www.activerse.com 512 708-1255

Borland 43
www.Borland.com 408 431-1000

Bristol Technology 4
www.bristol.com 203 438-6969

Coriolis 47
www.coriolis.com 800 410-0192

DCI 88
www.DCIexpo.com/Internet 508 470-3880

Greenbrier & Russel 19
www.gr.com/java 800 453-0347

IBM 69
www.software.ibm.com/ad/vaja 800 663-4723

Installshield 21
www.installshield.com 800 250-2191

Intuitive 75
www.intuitivesystems.com 408 245-8540

Iona 23
www.iona.com 800 orbix 4u

JavaWorld 83
www.javaworld.com 415 267-4527

KL Group Inc. 84
www.klg.com 800 663-4723

Marimba 63
www.marimba.com/download 415 328-JAVA

Mecklermedia 81
www.iworld.com 800 500-1959

Microsoft Corporation 91
www.microsoft.com/VisualTools 800 621-7930

MindQ 44
www.mindq.com 800 847-0904

Net Guru 14
www.ngt.com 800 know.ngt

Net Guru 56
www.ngt.com 800 know.ngt

Object Matter 56
www.objectmatter.com 305 718-9109

OMG 79
www.omg.org 508 820-4300

O’Reilly 57
www.software.oreilly.com 707 829-0515

Advertiser Page
Petronio Technology Group 59
www.petronio.com 617 674-1184

PreEmptive Solutions, Inc. 33
www.preemptive.com 216 732-5895

Progress Software 27
www.progress.com 617 280-4000

ProtoView 15
www.protoview.com 609 655-5000

RogueWave Software, Inc 11
www.roguewave.com 800 487-3217

Sales Vision 13
www.salesvision.com 704 567-9111

Schlumberger, Ltd. 25
www.cyberflex.austin.et.slb.com 609 234-8000

SofTech Computer Systems 20
www.softech.com 814 696-3715

Stingray Software Inc. 2
www.stingsoft.com 800 924-4223

Sun Microsystems 51
www.sun.com 800 JavaSoft

SunTest 67
www.suntest.com 415 336-2005

SuperCede 6
www.asymetrix.com 800 448-6543

Sybex Books 35
www.sybex.com 510 523-8233

Symantec 3
cafe.symantec.com 800 453-1059 ext. 9NE5

SYS-CON Publications 77
www.sys.con.com 914 735-1900

SYS-CON Publications 84
www.sys.con.com 914 735-1900

Thought, Inc. 29
www.thought.com 415 836-9199

Zero G. Software 34
www.zerog.com 415 512-7771

5 More ads 34
www.zerog.com 415 512-7771

5 More ads 34
www.zerog.com 415 512-7771

5 More ads 34
www.zerog.com 415 512-7771

5 More ads 34
www.zerog.com 415 512-7771

5 More ads 34
www.zerog.com 415 512-7771

55VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Shortcomings
The simple approach to inserting assert i o n s
into Java code described here cannot pro-
vide the following, more sophisticated types
of assert i o n s :
• A s s e rtions that relate output values of
methods to their input values: For example,
suppose one defined a method which
swapped the values of its two parameters.

void swap (SomeType x, SomeType y) {

SomeType z;

z = x;

x = y;

y = z;

}

One might want to assert, just before the
method re t u rns, that the new value of x is
equal to the old value of y and the new value
of y is equal to the old value of x. This is not
possible with our assertion mechanism.
A s s e rtion mechanisms for which this is pos-
sible have additional syntax which allows
the “before and after” values of variables to
be distinguished.
• A s s e rtions which involve quantified
e x p ressions: Formal methods, and the anno-
tations of Anna and SPARK, allow expre s-
sions to be quantified by “for all”, “exists”,
or “not exists”. So, the fact that a natural
number N was prime could be asserted by
saying that there did not exist numbers P
and Q with 1 < P, Q < N and P*Q = N. Again,
this is not possible with our assertion mech-
anism. Mechanisms which can handle the
full power of the predicate logic must have
additional syntax and be provided with
sophisticated theorem proving tools.

Conclusions
Recent commentators have suggested

that assertions provide a valuable defensive
p rogramming technique. One of the nine
ways advocated for making code more re l i-

able is to “use assertions liberally” [9].
We have demonstrated a simple mecha-

nism for introducing assertions into Java pro-
grams. Two classes have been defined:
A s s e rtion and CheckedAssertion. The form e r
allows assertions to be used very simply. Any
exceptions thrown as a result of the asser-
tions failing may be caught or pro p a g a t e d
out of the program. The CheckedAssert i o n
class re q u i res the exceptions to be caught or
explicitly listed in a throw clause for the
methods involved. This provides gre a t e r
c o n t rol and “self documentation” of the
a s s e rtion mechanism.

Our assertion mechanism is part i c u l a r l y
valuable when Java is used in larg e r, critical
applications, where developers are imple-
menting classes for general use and for Java
Beans components.

References
1. K. Arnold and J. Gosling, The Java Pro -

gramming Language, Addison Wesley,
ISBN 0-201-63455-4, 1996.

2. J.G.P. Barnes, High Integrity Ada: The
SPARK Approach, Addison-Wesley, ISBN
0-201-17517-7, 1997.

3. B.A. CarrÈ, J.R. Garnsworthy and D.W.R
Marsh, “SPARK: A Safety-Related Ada
Subset”, in W.J. Taylor (ed.), Ada in
Transition, IOS Press, Amsterdam, 1992,
pp. 31-45.

4. P. Chan and R. Lee, The Java Class
Libraries: An Annotated Reference , Addi-
son-Wesley, 0-201-69581-2, 1996.

5. R.M. Cohen, Proving Gypsy Programs,
Ph.D. Thesis, The University of Texas at
Austin, 1986.

6. S. Cook and J. Daniels, Designing Object
Oriented Systems: Object-oriented Model -
ing with Syntropy, New York: Prentice
Hall, 0-13-203860-9, 1994.

7. D.W. Flater, Y. Yesha and E.K. Park,
Extensions to the C Programming Lan -
guage for Enhanced Fault Detection, Soft -

ware - Practice and Experience , vol. 23,
no. 6, pp. 617-628, June, 1993.

8. P. Gaution, An Assertion Mechanism
Based on Exceptions, in Proc. 4th C++
Tech. Conf., USENIX Association, pp.
245-262, August, 1992.

9. A. Joch, How Software Doesn't Work,
Byte, pp. 49-60, December, 1995.

10.C.B. Jones, Systematic Software Develop -
ment using VDM, Prentice Hall, ISBN 0-
13-880733-7, 1990.

11.D.C. Luckham, F.W. von Henke, B. Krieg-
Brçkner, and O.Owe, Anna - A Language
for Annotating Ada Programs, Lecture
Notes in Computer Science, vol. 260,
Springer-Verlag, 1987.

12.B. Meyer, Applying Design by Contract,
IEEE Computing, vol. 25, pp. 40-51,
October, 1992.

13.D.S. Rosenblum, A Practical Approach to
Programming with Assertions, IEEE
Transactions on Software Engineering,
vol. 21, no. 1, pp. 19-31, 1995.

About the Authors
Dr. John Hunt has been working in the object-orienta-
tion field since the mid-1980s in both industry and
academia. He became interested in Java early in
1995 and has worked with a number of companies
(including Sun) with Java. He is particularly interested
in developing real world applications using Java and
in issues associated with Java performance, integrity
and architecture. John can be reached at
jjh@aber.ac.uk

Dr. Fred Long lectures on software engineering and
formal methods. He is a visiting scientist at the Soft-
ware Engineering Institute in Pittsburgh. Recently, he
has been researching Java's suitability for the devel-
opment of critical applications. Fred can be reached
at fwl@aber.ac.uk

fwl@aber.ac.uk

jjh@aber.ac.uk

Listing 1.
import assertion.*;

public class Example {

public static void main (String args []) {

Example e = new Example();

e.test(1, 2);

e.test(2, 1);

}

public void test(int a, int b) {

System.out.println("In test with " + a + " and " + b);

Assertion.assert(a < b);

}

}

Listing 2.
>java Example

In test with 1 and 2

In test with 2 and 1

assertion.AssertionException: Failed assertion

at assertion.Assertion.assert(Assertion.java:41)

at Example.test(Example.java:11)

at Example.main(Example.java:7)

Listing 3.
public class Assertion {

/* Don't make assertion instances */

Assertion () {};

public static void assert (boolean bool) throws AssertionException

{

56 • VOLUME: 2 ISSUE: 12 h t t p: //w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

if (!bool)

throw new AssertionException("Failed assertion");

}

public static void assert (boolean bools []) throws AssertionEx-

ception {

for (int i = 0; i < bools.length; i++) {

a s s e r t (b o o l s [i]) ;

}

}

}

Listing 4.
public class AssertionException extends RuntimeException {

AssertionException () {

this("Assertion exception");

}

AssertionException (String information) {

s u p e r (i n f o r m a t i o n) ;

}

}

Listing 5: CheckedAssertion class.
public class CheckedAssertion {

/* Don't make checked assertion instances */

CheckedAssertion () {};

public static void assert (boolean bool)

throws CheckedAssertionException {

if (!bool)

throw new CheckedAssertionException("Failed asser-

t i o n ") ;

}

public static void assert (boolean bools [])

throws CheckedAssertionException {

for (int i = 0; i < bools.length; i++) {

a s s e r t (b o o l s [i]) ;

}

}

}

Listing 6: CheckedAssertionException class.

public class CheckedAssertionException extends Exception {

CheckedAssertionException () {

this("CheckedAssertion exception");

}

CheckedAssertionException (String information) {

s u p e r (i n f o r m a t i o n) ;

}

}

1/2 Ad

57VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

58 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Without data from a data-
base, business applica-
tions really don’t do
much. To take your Java
experience to the next

level, you should have
database connectivity. There

are still a lot of custom built DOS-based
applications that are using xBase database
technology, like dBASE, Fox Pro and Clip-
per. You’re trying to convince your compa-
ny to wake up and smell client/server, that
Java can work as a database client and you
can keep your data in their existing data-
base format. The solution is using Sequiter
S o f t w a re ’s CodeBase database manage-
ment library.

Your manager has decided that your
department is going to start using Java as
your standard development language. It
sounds simple enough, until you start to
wonder how you’re going to connect Java
to your xBase databases to use.

CodeBase is a management program for
h i g h - p e rf o rmance data access within a very
small memory footprint. It uses Java and
others such as C/C++, Visual Basic and Del-
phi. This means that no matter what your
development environment is, you only have
to learn one database object model. Its
l i b r a ry is designed for single-user, multi-
user and client/server enviro n m e n t s .
Whether you are developing for one user,
one department or one enterprise, you are
c o v e red with CodeBase. For developers
who have a tendency to rely on custom con-
t rols, CodeBase includes 16-bit VBX and 32-
bit OCX data-aware contro l s .

CodeBase Versus JDBC
With the big push to marry Java to data-

bases, the question of JDBC (Java Database
Connectivity) comes up. Why should you
use CodeBase instead of JDBC? JDBC can
be used instead of CodeBase provided that

you are 1) using JDK1.1 or greater and 2)
have a JDBC-ODBC driver that can connect
to an xBase database. Using CodeBase as
your method to connect to your database,
it doesn’t matter what version of the JDK
y o u ’ re using because CodeBase doesn’t
need any particular version of Java. You
also won’t need to invest in a JDBC-ODBC
driver because CodeBase is your driver.

In addition to the multiple language sup-
p o rt, you also get all the source code for the
C/C++ and Java libraries. This protects your
investment in CodeBase because it allows
you to rebuild the library with any changes
you might need for your organization. It also
means that you don’t have to wait for
Sequiter to come up with a new release of
the CodeBase engine. You can get the code
fixes from Sequiter, apply it to your sourc e
code and rebuild it. You won’t lose any of
your library customization because you’re
in control of the source code. Lastly, you get
a re p o rt writer and code utility.

CodeReporter
CodeBase comes with a re p o rt writer

and a database administration tool. The
re p o rt writer, CodeReport e r, is a re p o rt
design tool writer with all the standard fea-
t u res of most re p o rt writers, like designing a
re p o rt by painting the layout on a form ,
Print to Screen, subtotal and total and so on.
The database administration tool, Code Util,
allows you to do analysis and maintenance
on your database. The two significant fea-
t u res CodeUtil has are the Backup and
R e s t o re features. CodeBase keeps track of
all changes to your database in a log file. If
the database becomes damaged, Code Util,
using the log file, can re s t o re all the data. It
also has a database analysis tool that cre-
ates re p o rts on your database activity.

With all the development language sup-
port and utilities, you probably think that
your shelf will be laced with manuals.

Sequiter does provide you with all the man-
uals, but they thought ahead and they are
in the Adobe Portable Document Format
(PDF). This makes finding the information
you need very easy because CodeBase
installs only PDF files for the languages you
are using. If you want to see the manuals,
they are all available on the CD-ROM.

Library
The power of CodeBase is in its library.

For Java developers, there are four class
libraries available. They are Code 4, Data 4,
Field 4 and Error 4. There are also some
minor classes that support the main four. The
Code 4 class is used to connect your Java
application to the database server and lock
the data files when needed. The Data 4 class
contains the methods you will use to re t r i e v e
and store information to your data files as
well as database index maintenance. The
Field 4 class is used to access and store field
values within a row of the database. Finally,
the Error 4 class provides you with database
exception handling. It is also an abstract class
based on the Java Exception class.

So what does this all mean and how
does this help you? The classes have been
broken down into logical units of work. In
order to connect your Java applet to your
xBase database, you use the Code 4 class.
Once a successful connection is estab-
lished, you use the Data 4 class to actually
work with the database. You can open the
database, close it, create an index and so

High perf o rmance xBase data access across multiple
development environments with a small footprint

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
CodeBase 6 with
Java Documents
Sequiter Software, Inc
PO Box 783 Greenland, NH 03840
Phone: 403-437-2410
Fax: 403-436-2999
Web: www.sequiter.com
Email: info@sequiter.com
Requirements: Windows 95 or NT for CodeBase

server; JDK or Java compiler
Price: $395US

CodeBase 6
by Sequiter Software, Inc.

PRODUCT REVIEW

by David Jung

59VOLUME: 2 ISSUE: 12 •h t t p: //w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

on. The methods in the Field 4 class are
used to handle the field manipulation of a
given row. To provide exception handling,
the methods of the Error4 class are used.

CodeBase Implementation
C o d e B a s e ’s Java implementation is

based on a simple client-to-server model.
CodeBase comes with a server component
that will run on your Intel-based non-Unix
Web serv e r. The server supports both
TCP/IP and IPX/SPX transport protocols, so
if you’re running a Novell networks you
don’t have to invest in any TCP/IP Winsock.
Your Java applet, the client, will run on
your user’s Java virtual machine and talk to
the CodeBase server. Note: Sequiter will

soon have a server component for Unix-
based Web servers; it should be ready in
the first half of 1998.

E d i t o r ’s Note: Sequiter Software has
informed us that the CodeBase server now
supports only TCP/IP. Also, their develop -
ment plans have changed and they do not
know if they will be developing a server com -
ponent for Unix.

Listing 1 is an example of how you can
use CodeBase to access information. It will
retrieve the age and date of birth an
employee and calculate their age based on
their date of birth and compare it with their
age in the database.

You will find that CodeBase 6 is a gre a t
database management library to help you

migrate your xBase systems to a bro a d e r
p l a t f o rm. It’s fast, doesn’t re q u i re a lot of
re s o u rces on either the client or server side,
and with ro y a l t y - f ree distribution and sourc e
code included in the price of the pro d u c t ,
you are getting a lot for your money.

About the Author
David Jung is a systems engineer specializing in
client/server and distributed database development
using VB, Access, SQLServer, Oracle and Internet
technology. He has also co-authored several Visual
Basic books including “Visual Basic 5 Client/Server
How-To” (Waite Group Press). David can be reached
at Davidj@vb2java.com

Davidj@vb2java.com

Listing 1.
i m p o r t c o d e b a s e . * ;

i m p o r t j a v a . u t i l . D a t e ;

importjava.io. IOException;

importjava.net. UnknownHostException;

class CodeBaseEG

{

p u b l i c s t a t i c v o i d m a i n (S t r i n g a r g s [])

throwsError4, IOException, UnknownHostException

{

Code4client = newCode4();

client. connect (" ", -1, "user 1", " ");

Data4db = newData4 (client);

d b . o p e n (" P E R S O N A L ") ;

Field4doubleage = newField4double(db,"AGE");

Field4datebdate = newField4date(db,"BIRTH_DATE");

d b . t o p () ;

Datenow = newDate();

l o n g m i l l i A g e ;

i n t d a y A g e ;

milliAge = now.getTime()-bdate.contents.getTime();

dayAge = (int)(((milliAge/1000)/3600)/24);

System.out.println(bdate.contents + " " + now);

System.out.println("Age in days based on birthdate:" + dayAge);

System.out.println("Age based on age field" + age.contents);

d b . c l o s e () ;

}

}

1/2 Ad

60 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Component software has swept
t h rough the software industry. Millions of
developers now drag and drop compo-
nents on a form rather than writing sourc e
code. JavaBeans™ has provided an ele-
gant component model for the Java devel-
opment environment and is widely accept-
ed in many development enviro n m e n t s .
H o w e v e r, JavaBeans lacks any support for
distributed computing. This art i c l e
e x p l o res how CORBA and JavaBeans
could work together to provide an excel-
lent distributed component model with
the added benefit of the cross language
i n t e roperability that is a trademark of
CORBA. A prototype of such
“CorbaBeans” is demonstrated.

Introduction
The past few years have seen enorm o u s

changes in the software development
p rocess. Not so long ago, implementing a
c l i e n t / s e rver application meant writing
raw data back and forth to a TCP/IP socket.
Worse, the toolkits that were available to
simplify the task of developing client/serv-
er systems were all incompatible with each
o t h e r. To d a y, CORBA has turned this
a round; objects can communicate with
other objects directly even if they are
located in diff e rent software applications,
on diff e rent hard w a re or in diff e rent lan-
g u a g e s .

JavaBeans
Just as revolutionary is the move to

component-based software. For the last
thirty years, nearly all software has been
written by typing long lists of text com-
mands into a computer screen. Only recent-
ly has this advanced with the focus on
graphical component-based development
environments. Reusing components within
such a graphical development environment
is a simple matter of drag-and-drop. This
simple and quick reuse has been quantified

in some studies with the conclusion that
component re-use can speed development
by as much as a factor of 30.

Components are incredibly import a n t
for software development and re-use. It’s
safe to say that while a few of us like to
write code, roughly 75 percent of the devel-
opment community just drags and drops
icons onto a form. Notably, even Java devel-
opers like the speed with which a complete
application can be crafted using visual com-
ponents. It’s actually sort of a testament to
the strength of Java that it has survived this
long without a strong offering of compo-
nent development environments. Jav-
aBeans is what will ensure that Java can
compete in that marketplace.

JavaBeans introduced component soft-
ware development to Java just over a year
ago. Today, JavaBeans is widely accepted in
many different development environments.
Most notably, Borland and Symantec have
restructured their entire development envi-
ronments around JavaBeans. Borland’s
JBuilder includes more than 150 JavaBeans
which can be used and distributed royalty-
free. Symantec’s latest Visual Café 2.0 edi-
tions include more than 100 JavaBeans with
similar royalty-free licensing.

JavaBeans has even made it into the
b rowser market. Marc Andreessen re c e n t-
ly announced that the Netscape bro w s e r s
would be rewritten with reusable Java-
Beans. For example, one Bean might re p-
resent an HTML page while another would
re p resent a newsre a d e r. Developers could
use these components to write their own
s o f t w a re by simply importing them into
their favorite software development envi-
ronment and then using drag-and-drop to
include the JavaBean’s functionality into
custom applications. In addition, Sun has
recently released a JavaBean for its HotJa-
va browser and other Web bro w s e r. Jav-
aBeans is available from small companies.

The architecture for JavaBeans is very

elegant. The design of JavaBeans is based
on two key architectural insights. First, any
Java class can be treated as a trivial Java-
Bean. Second, a technique called Reflec-
tion can be used to examine the capabilities
of a JavaBean.

The first insight guarantees that creating
JavaBeans is basically just as easy as mak-
ing any other Java object. In fact, many Java
Beans can be used just like any other Java
object. The JavaBeans arc h i t e c t u re is
object-oriented from the ground up. This
will be a gigantic relief to people struggling
with the ugly APIs defined for other compo-
nent models.

The second insight has to do with the
use of a technology which is new to many of
us: Reflection. The powerful capability of
Reflection is that it permits objects to
examine each other at runtime to discover
the capabilities of objects. Java remains
type-safe, but Reflection provides many of
the same benefits of weak typing in allow-
ing objects to adapt to each other at run-
time rather than at compile time.

Components usually have an exposed
set of properties, methods and events that
interact with other components. Reflection

CORBACORNER

C o r b a B e a n s
Adding the power of Beans to CORBA

by Jeff Nelson

Lately, the trade press has been full of
the word “component.” Ever since one
of the leading magazines in the com-
puting industry published an article
saying that “components would
replace objects,” the concept has been
hot. But what are components? And do
they replace objects, or are objects a
mechanism to implement components?
This month, Jeff Nelson of DiaLogos
returns to the column to explore what is
meant by the JavaBeans component
composition model and how that
relates to the CORBA distributed sys-
tems integration platform.

Richard Soley
Editor, CORBACORNER
President and Technical Director of the
Object Management Group, Inc.

h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m 61VOLUME 2 ISSUE 12 •

can be used to examine what a JavaBean
can do in the form of these properties,
methods and events without requiring the
original developer to spend hours writing
code to configure the component frame-
work, a tedious task required with less ele-
gant component models. The tool that facil-
itates all of this in JavaBeans is called,
appropriately, the Introspector. It provides
excellent default behavior for exposing the
capabilities of any component, while allow-
ing the component developer to configure
the information which is published to other
components if re q u i red. However, most
developers find this unnecessary for nearly
all components.

One limitation that JavaBeans has tradi-
tionally had is that it is restricted to a sin-
gle application. Developers can easily
“ w i re up” some JavaBeans into an applica-
tion but not into a set of distributed appli-
cations. Let’s consider one concrete exam-
ple: Suppose a consulting company wants
to track how many hours are spent by each
employee on diff e rent projects. This would
be a perfect application of distributed com-
puting, because you would want potential-
ly hundreds or thousands of desktops to
send back schedule summaries to the
accounting department. JavaBeans would
help you quickly and easily build the fro n t
end for each consultant and the back end
for the accounting department, but then
you are stuck. The JavaBeans developer
would need to bring in some other tech-
nology to solve this problem. Enter:
C O R B A .

CORBA
CORBA has done a wonderful job over

the past few years of allowing objects in dif-
ferent programs to communicate with each
other. In fact, a year ago I showed one of my
managers a distributed application that I
had written over the course of several
years. The networking code came out to
about 5,000 lines to handle several different
failure conditions. However, the application
still wasn’t very robust. The same applica-
tion, rewritten using CORBA, was just 400
lines and made use of several different
fault-tolerant features built into the ORB.
Furthermore, the CORBA port opened the
door for migrating the front end away from
C++ into Java. At the same time, while
CORBA is entirely object-oriented, it cur-
rently lacks any form of component model.
As we stated earlier, the trend in the soft-
w a re industry seems to be away fro m
source code and in the direction of compo-
nents.

So to summarize, JavaBeans has an
excellent component model but no support
for distributed computing. CORBA lacks a
good component model but is the tool of

choice for distributed computing. These
differences in the two technologies beg the
question: How do we bring these two won-
derful technologies together to make each a
more powerful tool?

CORBABeans
The first goal of bringing the two tech-

nologies together would be to make it sim-
ple to “wire up” not just a single application
with JavaBeans, but open up the possibility
of creating whole systems of interacting
distributed software. This goal could be
realized if the wiring between JavaBeans
could extend between applications.

The properties, methods and events of a
JavaBean can easily be wrapped into a
CORBA server by paralleling many of the
key architectural designs of JavaBeans in
CORBA. For example, the methods of a Java
Bean can be exposed as a member method
of a CORBA interface. The properties of a
JavaBean can be exposed as a CORBA
attribute. The events of a JavaBean can be
exposed using either the CORBA
Event Service or by following the
same naming conventions used in
Java to distribute EventObjects.

Since JavaBeans can act as both
CORBA servers and CORBA clients,
this design provides a way to make
JavaBeans itself into a distributed
component arc h i t e c t u re, perh a p s
called “DBeans”. Each JavaBean,
even Beans which have alre a d y
been written by component devel-
opers, could be used in a distrib-
uted application and integrate natu-
rally with the network. This is a
powerful capability that opens the
door to writing powerful distrib-
uted applications with a simple
drag and drop.

Prototype
Rather than just discuss it, let’s jump

into a working example of how
CorbaBeans could be implemented. By the
w a y, the source code for this example is
available on-line, so you can grab a copy
and try it out for yourself! The prototype is
composed of five components with each
component demonstrating a separate
p o i n t .

CORBA Server as JavaBeans
HelloImpl is a JavaBean which is also a

complete CORBA server. This Bean demon-
strates that existing CORBA servers could
be wrapped inside of JavaBeans to provide
powerful functionality within existing Jav-
aBean compatible development enviro n-
ments. This Bean can be imported and used
in any JavaBeans compatible development
tool. Once the Bean is instantiated, it will

list itself in the Visigenic Smart Agent and
begin accepting remote invocations. Since
it is a JavaBean, its methods, properties,
and events are also exposed through the
normal mechanisms provided by the Jav-
aBeans development environment.

A Bean like this would allow JavaBeans
developers to implement server applica-
tions with only a couple of drag and dro p
applications. Suppose you are developing
a client/server ordering tracking system
for use by departments in a large compa-
n y. Unfort u n a t e l y, as always happens,
each department might have a slightly dif-
f e rent idea about what the backend
should do. One group wants it to save
data to a relational database. Another
d e p a rtment always uses object databases.
Yet another group would like all transac-
tions to be approved by a human atten-
dant before processing them. If the serv e r
was implemented as a CorbaBean, new
functionality could be plugged into the
s e rver quickly. The server could be cus-

tomized with only a drag and drop opera-
tion within any JavaBeans development
e n v i ro n m e n t .

CORBA Clients as JavaBeans
The second part of the prototype is

VHello, a JavaBean which implements a
CORBA client. Many software developers
might see JavaBeans clients as more useful
than the above JavaBeans server. When a
JavaBean implements a CORBA client, new
client applications can be built with drag
and drop operations. Clients often require
such customization, since often the clients
are the front ends of a distributed system.
Front ends, user interfaces in particular,
often experience a great deal of change as
customers provide feedback about the
human factors of an application.

Suppose you are developing a set of
applications for the infrastru c t u re of a
l a rge company, including order tracking,

“JavaBeans is
what will ensure

that Java can
compete in that
marketplace.”

62 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

customer service and accounting systems.
All of these individually are very success-
ful client/server applications. However,
they could work even better if they could
arbitrarily be plugged together to meet the
needs of diff e rent departments within the
o rganization. Implementing the CORBA
clients as JavaBeans means that making a
new application into a client of one or
m o re of the ord e r, customer, or accounting
systems is a simple matter of drag and
d ro p .

Building CORBA With JavaBeans
The third component of the prototype is

a JavaBean affectionately called
CorbaBean. This name is used because this
JavaBean automatically converts other Jav-
aBeans into CORBA servers. This JavaBean
uses the Introspector on other JavaBeans
to discover what properties, methods, and
events they support. It then generates the
CORBA files re q u i red to implement a
CORBA server using this JavaBean as the
implementation. This would permit compo-
nent developers to take their existing
Beans and create servers for them auto-
matically.

For example, suppose you are running a
savvy software development org a n i z a t i o n .
Your group already has written hundre d s
of JavaBeans to perf o rm all of your mis-
sion critical business activities. The pro b-
lem is that you want your order tracking
Bean in one application to work with your
account auditing Bean in another applica-

tion. CorbaBean, the third portion of this
p rototype, demonstrates that you could
automatically compile your Beans into
CORBA serv e r, and facilitate this kind of
application to application communication
i n s t a n t l y.

Component Migration
The fourth component of this pro t o t y p e

is not a JavaBean. Rather, this component
is a C++ CORBA server written with Vi s i-
B roker for C++. This component intero p e r-
ates seamlessly with the VHello compo-
nent, demonstrating the following key
point. One of the strengths of CORBA is
that it permits diff e rent programming lan-
guages to work naturally with each other
by providing a middleware for their objects
to invoke each other. The CorbaBeans

a rc h i t e c t u re could also make use of this
b e n e f i t .

When a CORBA server is compiled fro m
a JavaBean, the resulting CorbaBean
defines a particular CORBA interface. This
i n t e rface is not bound to any particular lan-
guage; in fact, the implementation of this
i n t e rface in Java is completely hidden by
the interface. For all the user of the
CorbaBean knows, the Bean may have
been implemented in C++, Visual Basic or
P e r l .

This observation opens the door to the
design of a cross-language distributed com-
ponent environment. While the architectur-
al principles of JavaBeans are simple and
elegant, the same arc h i t e c t u re can be
adopted and implemented in many differ-
ent languages.

Any CORBA interface is a trivial
CorbaBean. However, a CORBA interface
can be written in any language, even
COBOL. Once the CORBA interface is pub-
lished and compiled into a CorbaBean, the
implementation of the Bean in COBOL is
not important. The CorbaBean is still com-
patible with any JavaBeans development
environment.

Conversely, the design principles behind
the JavaBeans architecture could be used
to implement a component model in other
languages, such as C++. For example, the
methods, attributes and events of a CORBA
interface could be mapped into the meth-
ods, properties, and events of a compo-
nent in C++. This is actually rather straight-
forward since the CORBA Interface Reposi-
tory works in much the same way as Reflec-
tion in Java.

Due to our use of CORBA as the glue for
this component architecture, CorbaBeans
are inherently compatible with many differ-
ent development environments. In particu-
lar, tools are already available to work with
CORBA interfaces in Visual Basic, Delphi,
PowerBuilder and several other develop-
ment environments. Once a JavaBean is
compiled into a CorbaBean, that Be a n

Figure 1: JavaBeans in distributed systems

OMG Component RFP
The OMG recognized the need to add a component model to

CORBA. To address this need, a Request For Proposals was issued
by a consortium of OMG members including Oracle, Sun, IBM and
Netscape, for interested parties to submit designs for a component
model for CORBA. The initial submissions were not available at the
time of this writing, but indications are that submissions will be
based on many of the architectural insights of JavaBeans.

63VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

could be re-used not just in Java develop-
ment environments but in nearly any devel-
opment environment through CORBA’s
powerful interoperability.

The reverse is also true. CORBA tools can
c o n v e rt COM interfaces into CORBA inter-
face. If CORBA interface could be convert e d
into CorbaBeans, existing Visual Basic
OCXes could be re-used within JavaBeans
development environments. This sort of
i n t e roperability provides an excellent path
for component migration to JavaBeans.

Scripting
Scripting is a common pro g r a m m i n g

technique of writing small, useful programs
in only a few lines of code, called scripts.
Netscape’s JavaScript is a good example of
a scripting language. Using JavaScript, sim-
ple tasks, such as intelligently animating an
image, can be performed by embedding a
script directly in an HTML page.

One of the key requirements of a good
scripting language is a simple, easy to
understand API. Without this, too much
time must be spent on the overhead of
learning how to write the scripts, destroy-
ing the value of writing short scripts to per-
form useful tasks.

Component developers strive to make
components which have a simple, easy to
use interface within a visual development

e n v i ronment. One of the side effects of
this is that the API usually makes sense in
other contexts as well. For example, when
writing an e-mail component, the compo-
nent would support pro p e rties such as
to, from and subject, methods to send e-
mail and events to indicate when new e-
mail has arrived. This simple API is also
exactly what a scripting developer would
want to have access to when writing
scripts for e-mail.

This natural marriage of scripting with
components provides benefits to
CorbaBeans as well. Some scripting lan-
guages allow small scripts to be written
with JavaBeans. This article has suggested
that CorbaBeans are just JavaBeans with
special distributed computing capabilities,
so scripting languages which support Jav-
aBeans could also be used with
CorbaBeans.

Summary
JavaBeans and CORBA are both power-

ful development tools individually. Howev-
e r, the whole is greater than the sum of the
p a rts. CorbaBeans allows JavaBeans to
implement and use network services with-
in the same JavaBeans development envi-
ronments that are currently installed on
your computer. CorbaBeans makes writing
CORBA application a matter of drag and

d rop using those same tools. The cro s s
language capabilities of CORBA mean that
CorbaBeans written in one language work
with components written in widely diff e r-
ent languages. Scripting languages for Jav-
aBeans would naturally work spectac u l a r-
ly well with CorbaBeans, as well.

Where to Go From Here
The prototype described in this article

can be downloaded from http://www.Dis-
tributedObjects.com

Information on CORBA standards can be
found at http://www.omg.org

M o re information on JavaBeans can be
found at http://www.javasoft.com/beans/

About the Author
Jeff Nelson is a consulting architect with DiaLogos
Incorporated, experts in CORBA and Java Technolo-
gies (http://dialogosweb.com) and active partici-
pants in the Object Management Group. He has 8
years of experience in distributed computing and
object technology. He holds a Master ’s Degree in
Applied Mathematics and industry certifications from
Sun, Microsoft, and IBM. He can be found on the
web at http://www.distributedobjects.com/ and
reached through e-mail at jnelson@distributedob-
jects.com.

jnelson@distributedobjects.com.

1/2 Ad

64 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

In our last column we addressed one of
the most commonly asked questions
regarding the sending of e-mail from within
a Java applet or application. This was
achieved using the SMTP protocol, and by
the end of the article a fully functional
SMTP class was constructed. Before we
continue the development of our column
project, Informer, I thought it would be a
good idea to complete the e-mail service by
presenting the other half of the equation:
picking up mail from a mailbox. This article
will concentrate on building a class that can
be used to interrogate a POP3 mailbox.

If you read last month’s column, you
may have noticed how easy it was to com-
municate with the SMTP server. We opened
up a socket connection to the server, and
then passed commands back and fort h
using ASCII text strings, terminated in lines.

Well, the good news is that the majority
of TCP servers operate in exactly the same
way; that is, using ASCII text strings to pass
commands. This includes, mail serv e r s ,
news servers and FTP servers. On the face
of it, this doesn’t seem to be the most effi-
cient way to communicate with servers,
and it isn’t. But you have to look at the glob-
al picture to understand why it is imple-
mented the way it is.

What’s the one greatest strength of the
I n t e rnet? And, what is the one biggest
headache for software developers? The
same answer can be applied to both ques-
tions: variety of platforms. The Internet is a
collection of networks all communicating
with one other without having to rely on a
single operating system. TCP/IP is a way for
a UNIX box to talk to an NT box without
having to worry about its operating system.
However, when asking a developer to write
an application for both platforms, ques-
tions about byte and word size will be

asked and invariably the answers will be
different. One good thing about the com-
puting world is that of all the different stan-
dards floating around, nearly every single
machine knows of ASCII text. This makes it
the ideal data transport for communicating
with servers.

POP3 Server
A POP (Post Office Protocol) server is a

piece of software that collects and holds
mail until a client comes and requests it.
Taking the analogy presented last month
one step furt h e r, a POP server can be
thought of as your mailbox at the bottom of
your garden. When someone mails you a
letter, it is placed into the post office net-
work where it is sorted and delivered, usu-
ally by a mail carrier, to your mailbox. It is
not the responsibility of the post office to
try to tell you how to read it or open it. It is
m e rely a pigeonhole in which incoming
mail can be placed and removed. A POP
server is no different. It performs the exact
same function: providing a holding area
until you pick up your mail, using your e-
mail package. How the mail actually gets to
your mailbox, is of no real concern to you.
All you need to worry about is how to pick
up the mail once it has arrived.

As stated earlier the POP server sits and
listens for connections on port 110 and,
once connected, uses a series of commands
to communicate with the client. The com-
plete POP version 3 (sometimes referred to
as POP3) protocol can be found in the RFC
document 1225. You can read this docu-
ment on the Web site http://www.acade-
my97.com. If you do read this specification,
you may be surprised by how small it actu-
ally is (only 16 pages) with the majority of
them showing examples.

Connection
Before we can begin to send commands,

we must first open a connection to the serv-
er, and this can be achieved using the Sock-
et class, as shown in Listing 1.

Just like the SMTP class we developed
last month, we create two streams that will
make communicating with the server much
e a s i e r. For example the Buff e re d R e a d e r
class gives us the method re a d L i n e () ,
which can be used to receive data back
from the server without having to worry
about carriage returns, etc.

If a connection is successful, the first
line we will receive back is a welcome mes-
sage which may read something like:

+OK mail.n-ary.com POP server ready; Sun, 21

Sep 1997 12:42:00 GMT

W h e reas the SMTP host used status
codes to indicate success or failure, the
POP server uses +OK and -ERR to flag sta-
tus values. This makes the receiving func-
tion at the client much easier to code.

The next thing we have to do is log on.
We pass the username and password of the
mailbox addressee and, if it is successful,
+OK will be sent back as shown in Listing 2.

We have coded two special functions,
sendMessage() and rxdLine(…), that per-
form some additional error checking. The
source for both of these can be found in
Listing 3.

Mail Headers
The POP3 server only supports a very

small set of commands. We have com-
mands to retrieve just the mail headers, the
number of mail messages waiting, the com-
plete mail message and commands to
delete mail messages from the server.

Messages are queued at the server one
after another, generally in the order in
which they arrived. The POP server gives
each message an ID starting at 1. Note, that
this ID is only unique for that session. If you
delete message 3, for instance, and then log
off and log back on again, then the message
that was ID 4, now has the ID of 3. So be
very careful when coding e-mail clients.

One of the most basic things that is very
useful, is the ability to see what mail is wait-
ing for us without having to download the

POP Goes
the Serv e r

Building a class that can be used to
interrogate a POP3 mailbox

VISUAL CAFÉ

by Alan Williamson

65VOLUME: 2 ISSUE: 12 •h t t p: //w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

complete message. This is especially useful
for clients on a dial-up connection, where
they can choose whether to accept or not
accept delivery of attachments. To achieve
this we must first know the number of e-
mails waiting for us, so that we can then
count forward to that number. We do this
by sending the command STAT to the serv-
er. The server will then return the result:

+OK 4 3210

The first part of the response is the sta-
tus flag, and the second is the number of
messages waiting in collection. The last
value is the total size of all the messages,
expressed in octets. This is particularly
useful, as one can calculate a very accurate
progress monitor for the download status.

Having received the number of messages,
we then use the TOP command to download
just the message headers. The TOP accepts
two parameters: the message ID and a block
n u m b e r. For example, we can re t u rn the
header for message 2, by issuing the com-
mand ‘TOP 2 1’ to the serv e r. The server will
then re t u rn with a mail header for that mes-
sage, terminated with a single “.”.

As you can see, if you refer to the get-
MailHdr() function in the Listing 3, the
header consists of many different fields, of
which Subject, Date and From are of partic-

ular interest to us. We package this infor-
mation up into a class wMail and return.

Using this functionality, our e-mail client
can display a list of all incoming mail with-
out having to download each one.

Mail Transfer
The next step, is to actually download the

complete e-mail. This is perf o rmed using the
RETR command with the mail ID. For exam-
ple, to receive the e-mail, complete with
header and body, the following command
would be issued to the server: ‘RETR 2.’

Again, if you refer to Listing 3, and look at
the getMail(…) function, you will see this
o c c u rring. Notice how we determine the dif-
f e rence between the main body and the mail
h e a d e r. The mail header is transmitted first,
with a blank line indicating the end of the
header and the beginning of the main body.
For ease of use, we place the body into a
Ve c t o r, with each line of text as a new entry.

Mail Deletion
Deleting the message on the server, as

you may have already guessed, is a simple
matter of issuing the DELE command, com-
plete with the message ID. The server will
then re t u rn with a success or failure
depending on whether or not the message
exists.

Summary
That’s it! That is the basic functionality

required to implement a POP3 client. List-
ing 3 shows a couple of extra commands,
but the core has been demonstrated in the
main article body.

To see this class in action, I converted it
into a Java Servlet, which allows you to
check, read and delete your e-mail from a
Web bro w s e r. Visit http://www. a c a d e-
my97.com/email_login.html.

So far, we have implemented a very
basic front-end to Informer, complete with
database access to a list of contacts. We
also have the functionality to send e-mails
and, with this article, the ability to receive
e-mails as well.

Next month, we will be adding more fea-
tures to Informer

About the Author
Alan Williamson is on the Board of Directors at N-
ARY Limited, a UK based Java software company,
specializing in Java/JDBC/Servlets. He has recently
completed his second book, which focuses purely on
Java Servlets, while his first book looks at using
Java/JDBC/Servlets to provide a very efficient data-
base solution. He can be reached at alan@n-ary.com
(http://www.n-ary.com) and he welcomes all sugges-
tions and comments.

Listing 1.
BufferedReader In;

DataOutputStream Out;

Socket OutPort;

OutPort = new Socket("mail.n-ary.com", 110);

Out = new DataOutputStream(OutPort.getOutputStream());

In = new BufferedReader(new InputStreamReader(OutPort.get-

InputStream()));

Listing 2.
sendMessage("USER " + userName);

if (rxdLine("+OK") == null) throw new Exception("Invalid user-

name");

sendMessage("PASS " + passWord);

if (rxdLine("+OK") == null) throw new Exception("Invalid pass-

word");

Listing 3.
import java.io.*;

import java.util.*;

import java.net.*;

import java.text.*;

public class popMail extends Object

{

BufferedReader In;

DataOutputStream Out;

Socket OutPort;

String host;

String userName;

String passWord;

public popMail(String _Host, String _userName, String _passWord)

{

host = _Host;

userName = _userName;

passWord = _passWord;

}

public boolean open() throws Exception
{

return open(110);
}

public boolean open(int _port) throws Exception

{

t r y {

OutPort = new Socket(host, _port);

Out = new DataOutputStream(OutPort.getOutput-

Stream());

In = new BufferedReader(new InputStreamReader(Out-

Port.getInputStream()));

if (rxdLine("+OK") == null) throw new Exception(

"Server did not say hello.");

//- Send Username

sendMessage("USER " + userName);

if (rxdLine("+OK") == null) throw new Exception(

"Invalid username");

sendMessage("PASS " + passWord);

if (rxdLine("+OK") == null) throw new Exception(

"Invalid password");

return true;

}catch(IOException E){}

throw new Exception("Server not Ready");

}

public void close()
{

sendMessage("QUIT");
t r y {

O u t P o r t . c l o s e () ;
}catch(IOException E){}

}

private void sendMessage(String _M)

alan@n-ary.com

66 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

{

t r y {

Out.writeBytes(_M + "\r\n");

}catch(IOException E){}

}

private String rxdLine(String _command)
{

t r y {

String i = In.readLine();

if (i.indexOf(_command)==0)

return i;

}catch(IOException E){}
return null;

}

private String rxdLine()
{

t r y {

return In.readLine();

}catch(IOException E){}

return null;

}

public int mailNo()

{

String LineIn;

sendMessage("STAT");

if ((LineIn=rxdLine("+OK"))==null) return 0;

int x = LineIn.indexOf(" ");
LineIn = LineIn.substring(x+1,LineIn.indexOf(" ",x+1));

t r y {
return Integer.parseInt(LineIn);

}catch (Exception E){}

return 0;

}

public int[] getMailIDs()

{

String LineIn;

sendMessage("LIST");

if ((LineIn=rxdLine("+OK"))==null) return null;

int x = LineIn.indexOf(" ");

LineIn = LineIn.substring(x+1,LineIn.indexOf(" ",x+1));

int No=0;
t r y {

No = Integer.parseInt(LineIn);
}catch(Exception E){

No = 0;
}

if (No == 0)

return null;

int list[] = new int[No];

int a=0;

while ((LineIn=rxdLine())!=null)

{

if (LineIn.indexOf(".")!=-1) break;

list[a++] = Integer.parseInt(

LineIn.substring(0,LineIn.indexOf(" ")));

}
return list;

}

public wMail getMailHdr(int _id)

{

wMail M = new wMail();

M.ID = _id;

String LineIn;

sendMessage("TOP " + _id + " 1");

while ((LineIn=rxdLine())!=null)

{

if (LineIn.indexOf(".")==0)

b r e a k ;

else if (LineIn.indexOf("Date:") != -1)

M.Date = new Date(LineIn.substring(LineIn.index-

Of(":")+2, LineIn.length())).getTime();

else if (LineIn.indexOf("Subject:") != -1)

M.Subject = LineIn.substring(LineIn.index-

Of(":")+2, LineIn.length());

else if (LineIn.indexOf("From:") != -1)

M.From = LineIn.substring(LineIn.indexOf(":")+2,

LineIn.length());

else if (LineIn.indexOf("+OK") != -1)

{
t r y {

int q = LineIn.indexOf("(")+1;
M.Size = Integer.parseInt(LineIn.substring(

q,LineIn.indexOf(" ",q+1)));
}catch(Exception E){}

}

}

return M;

}

public wMail getMail(int _id)
{

wMail M = new wMail();
M.ID = _id;
String LineIn;

sendMessage("RETR " + _id);

boolean bHdr = true;

while ((LineIn=rxdLine())!=null)

{

if (LineIn.indexOf(".")==0 && LineIn.length()==1)

b r e a k ;

else if (LineIn.indexOf("Date:") != -1)

M.Date = new Date(LineIn.substring(LineIn.index-

O f (" : ") + 2 , L i n e I n . l e n g t h ())) . g e t T i m e () ;

else if (LineIn.indexOf("Subject:") != -1)

M.Subject = LineIn.substring(LineIn.index-

Of(":")+2, LineIn.length());

else if (LineIn.indexOf("From:") != -1)

M.From = LineIn.substring(LineIn.indexOf(":")+2,

LineIn.length());

else if (LineIn.indexOf("+OK") != -1)

{

t r y {

int q = LineIn.indexOf("(")+1;

M.Size = Integer.parseInt(LineIn.substring(

q,LineIn.indexOf(" ",q+1)));

}catch(Exception E){}

}
else if (LineIn.length() == 0 && bHdr)
{

bHdr = false;
M.vBody = new Vector(10,5);

}

else if (!bHdr)

{

if (LineIn.indexOf("..") == 0)

LineIn = LineIn.substring(1,

LineIn.length());

M.vBody.addElement(LineIn);

}

}

return M;

}

public void deleteMail(int _id)
{

sendMessage("DELE " + _id);
r x d L i n e (" ") ;

}

}

class wMail extends Object

{

public int ID=0;

public int Size=0;

public String Subject="";

public String From="";

public long Date=0;

public Vector vBody=null;

}

h t t p: //w ww.J a v a D e v e l o p e r s J o u rn a l . c o m VOLUME: 2 ISSUE: 12 • 67

JAVA CLASS LIBRARIES:

scsGrid Control
scsGrid Contro l is a grid control that pro-

vides many of the common features found in
grids for displaying and entering data. It is
designed for usability and fast uploads and
execution speeds on the client machine.
SofTech Computer Systems, Inc.
814 696-3715
www.scscompany.com

ProtoView WinJ
The WinJ Component Library is a rich

collection of ProtoView JavaBeans™. While
geared towards the professional developer,
these feature-rich controls are simple
enough for even the most basic Java pro-
grammer.
ProtoView Development Corporation
Russell Frith
609 655-5000 FAX: 609 655-5353
www.protoview.com

DATABASE CONNECTIVITY:

STOR/QM Data Storage
STOR/QM, an innovative Report Mining

solution goes beyond traditional COLD sys-
tems, offering re c o rd level access to
re p o rts and transaction information in
them, even vast information arc h i v e s .
STOR/QM can export results with databas-
es and spreadsheets.
People Net, Inc.
Bart Huitema
818 783-0606 FAX: 818 783-4999
storqm.peoplenet.net

SouthWare Innovation
Financial and management information

software with two dozen applications. The
SouthWare Excellence Series™ runs on more
than six hundred hardware/operating sys-
tem combinations including DOS, UNIX,
Windows and most popular networks.
SouthWare Innovations, Inc.
Rick Hulsey
334 821-1108 FAX: 334 821-1146
www.southware.com

SOLID Server
SOLID Server is an embeddable database

s e rver for mission critical applications.
Designed for robust unattended operation,
it is ideally suited for wide deployment in
large numbers. SOLID Server is powerful,
scalable and standards-compliant. S O L I D
Server powers Web sites, Internet appli-
ances and e-commerce solutions. As one of
the pioneers in the industry, S O L I D
released its 100% Pure Java™ JDBC driver
which is key to delivering dynamic content
on the Web and in Java applications.
Solid Information Technology Ltd.
Marten Mickos
FAX: +358 9 477 473 90
www.solidtech.com

UIM/Orbix™
UIM/Orbix™ is a graphical C++ develop-

ment solution providing a CORBA™ stan-
dard framework for distributed objects. It is
built upon the industry leading UIM/X®,
Orbix® and Orb/Enable™ tools. Key fea-
t u res include: built-in C++ interpre t e r,
graphical editors for constructing IIOP-
enabled clients and servers, graphical/non-
graphical object support, integration of UI
and distributed object code including com-
bined event loops, IDL development and
CORBA conformant capabilities and appli-
cation deployment.
Black & White Software, Inc.
Susan Karas
408 369-7400 FAX: 408 369-7406
http://www.blackwhite.com

JAVA EDUCATION & TRAINING:

Java™ Training
Become a Java™ expert with one of our

Java™ Training courses. Topics include:
The Java Language, Visual J++, Apps and
Applets, use with HTML, use with
ActiveX/COM and ActiveX Controls, AWT,
Threads, JDBC, J/Direct, AFC, Security, Java
Beans™.
Mastermind
Ken Ramirez
717 688-9927 FAX: 717 688-9568
http://www.mastermind.com

Here’s a Special
Preview of what

is to come!

Here’s a Special
Preview of what

is to come!

a sampling of the
1998 Java Buyer’s

Guide to Products
and Services
brought to you

courtesy of

 sampling of the
1998 Java Buyer’s

Guide to Products
nd Services
brought to you

courtesy of

• VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m68

69VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Java™ and Object Design
Java™ and Object Design is a five day

course targeted at software professionals
moving to Java. This course enables partic-
ipants to master both the use of Java, and
how to think and design in terms of objects.

Below are a few of the objectives stu-
dents will achieve:
• Use container classes in the Java Devel-

oper Kit
• Design using polymorphism, inheritance

and ecapsulation
• Use and customize the Java development

tools
ObjectSpace, Inc.
Rita Lundeen
972 726-4100 FAX: 972 726-4200
www.objectspace.com

JAVA WEB TOOLS:

Hybrid Shopping Cart
Hybrid Shopping Cart is a Java™ applet

that provides a complete user interface
package for internet shopping Web sites.

A “hybrid” is defined as an offspring of
two varieties – an item produced by the
blending of two diverse traditions. That’s
exactly what the Hybrid Shopping Cart
offers; a blending of the best features from
our CGI and Java shopping products.
Eastland Data Systems
Ed Zarrella
301 831-9681
www.eastland.com/hybrid.html

CUChat
C U C h a t is a Java™ Visual Chat

client/server platform. Clients upon arriv-
ing at a Web site enabled with CUChat will
be able to communicate/chat visually (rep-
resented as Avatars) with one another.
There is no need to install a plug-in since
CUChat is in 100% Java.
NetDIVE Corporation
Sue Berna
415 474-3756 FAX: 415 474-3756
www.netdive.com

PeopleNet HelpDesk
Help Desk Manager, an integrated multi-

user Windows package, provides complete
front-line support and management. Our
WWW interface gives any browser com-
plete access to Help Desk Manager’s
impressive features.
PeopleNet, Inc.
Bart Huitema
818 783-0606 FAX: 818 783-4999
helpdesk.peoplenet.net

CyberCAT
CyberCAT Java Catalog is a Java applet for

deploying Internet catalog and pro d u c t
information easily and inexpensively with-
out programming. Simply add your product
i n f o rmation, images, advertisements and
user interface graphics. CyberCAT Java Cat -
alog takes care of the rest.
Betacorp
John J. Bekto
905 564-2424 FAX: 905 564-6655
www.betacorp.com

Interrogate
The Interrogate search agent integrates

with Web browsers, to provide a simple
user interface for searching files -- either
within Web sites or on disk or CD-ROM. It
operates entirely on the local computer,
removing any necessity for serv e r- s i d e
scripting when searching pages on the
World Wide Web.
Bigfoot Partners, L.P.
Chris Lacey
cslacey@bigfoot.com

JAVA DEVELOPMENT TOOLS:

Visual Enabler 2.0
Visual Enabler 2.0 is a version control

toolset which delivers automated build
support for Visual Basic, Visual C++ and
Visual J++ projects (including .dsp and
.dsw). Visual Enabler 2.0 has tight integra-
tion to IDEs, automatic team notification
and the ability to register interest at a file
level.
Softlab Enabling Technologies
Nita Holcombe
770 668-8811 FAX: 770 668-8712
www.softlabna.com

Christy Wrightington
at 914-735-7300

or Christyw@sys-con.com.

Christy Wrightington
at 914-735-7300

or Christyw@sys-con.com.

ContactContact

submit your
product for

inclusion in the

1998 JAVA
BUYER’S

GUIDE

submit your
product for

inclusion in the

1998 JAVA
BUYER’S

GUIDE

Each year Java Developer’s Journal
publishes our annual Java Buyer’s Guide
o Products & Services , the most

comprehensive sourcebook and database
of companies providing Java-related

oducts and services available. Over
200,000 purchasers of Java products and
services will see your company’s listing
n the 1998 Java Buyer’s Guide.

o have your company’s product or ser -
vice included in the 1998 Java Buyer’s
Guide to Products & Services, simply fill
out our online listing submission form.

Point your Web browser to
www.javabuyersguide.com to have your

oduct or service listed today!

Click
Here
Click
Here
at
JavaBuyersGuide.com

• VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m70

71VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

72 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

After making the impor-
tant decision to embrace
the Common Object
Request Bro k e r (C O R B A) ,
the next important deci-

sion that you will have to
make is choosing an Object

Request Broker(ORB) vendor suitable for
your needs. You have many options to
select from: Digital’s ObjectBroker, Expert-
Soft’s PowerBroker, HP’s Orb Plus, IBM’s
SOM, Iona’s Orbix, Sun’s Joe, VisiBroker
from Visigenic, etc.

Six months back, when I first worked on
VisiBroker2.5, I found it a good ORB but
without many supporting services. In July
1997, Visigenic announced version 3.0 of
VisiBroker which made it more promising
than before.

Instant CORBA
In 1991, Object Management Gro u p

(OMG) specified CORBA 1.0, an Object Man-
agement Arc h i t e c t u re (OMA), for cro s s -
p l a t f o rm distributed computing. Using
ORB, a client object can transpare n t l y
invoke a method on a server object sitting
at any location on a network and developed
in any language. CORBA enables this func-
tionality with the help of its Interface Defin-
ition language (IDL), ORB bus, and services
and facilities extending it. The key feature
of CORBA is its IDL. All that the client
object knows about the remote object, is its
interface. CORBA provides location, lan-
guage and platform transparency. The OMG
left the implementation details of the speci-
fications up to the vendors. Different ven-
dors implemented the architecture differ-
ently. Subsequently, in December 1994 OMG
specified CORBA 2.0 with Intern e t - I n t e r
ORB protocol (IIOP) for the interoperability
across the vendors.

Installation
I could easily install Vi s i b roker 3.0 for

Java(VBJ) on both Windows 95 and Solaris
2.5. Visigenic separately ships other CORBA
components like Naming service, Event Ser-
vice and Vi s i B roker Manager. So I re p e a t e d
the installation pro c e d u re for them too. Con-
figuration was also easy. Vi s i B roker is a com-
pletely dynamic system and easy to manage.
Vi s i B roker 3.0 comes with good documenta-
tion, including an installation guide, pro-
g r a m m e r ’s guide and re f e rence manual.

Development
VBJ comes with a bunch of examples

covering almost all important features of
the product. It is easy to start with them.
You can go through the following steps for
developing CORBA based application:
1. Identify remote objects required for the

application. Write an interface for the
object using IDL.

2.Then compile the interface using the IDL
compiler, namely idl2java. The compiler
c reates an interface class, stub class,
skeleton classes, and supporting classes
per interface. The stub, _st_<interf a c e
name>.java, is a proxy of the re m o t e
object for the client. The proxy imple-
mentation invokes operations on the
remote objects. It does this by forming a
method, marshaling the data, and send-
ing the request over ORB. The skeleton
object provides the server side function-
ality and connects the server object to
ORB. VBJ 3.0 generates skeleton classes
named <interface name>ImplBase.java. It
also generates two more classes, namely
<interface name>Helper.java and <inter-
face name>Holder.java. The helper class
defines utility functions related to bind-
ing, etc. The holder class provides a hold-
er for passing parameters.

3 . The next step is to implement the client

and server interfaces. The implementation
generally involves initialization of ORB,
binding and registering implementation.

4. Now, compile all the generated code and
application. Start the VBJ specific dae-
mon called OSAgent. You can run the
server and client using a program called
vbj. The vbj program actually invokes
Java Virtual Machine(JVM) and runs your
code. It also enables it to configure the
threads and connection information. You
can even plug an object debugger into it.
This debugger is a GUI based interceptor
of the IIOP messaging. The debugger is a
very useful tool for development.

Important Components and Their
Functions

VBJ supports a full language mapping
and complete implementation of mandato-
ry CORBA features, like pseudo-interfaces,
ORB, BOA, and IR. Visigenic ORB fully
implements the IIOP protocol. VBJ 3.0
comes with naming and event services fully
implemented in Java.

VBJ offers idl2java compiler to automat-
ically generate Java code from IDL. The

CORBA 2.0 compliant ORB; a good choice for
your distributed object applications

Vi s i B ro k e r 3 . 0
by Visigenic Software, Inc.

PRODUCT REVIEW

by Khanderao Kand

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
VisiBroker 3.0 for Java
Visigenic Software, Inc.
951 Mariner’s Island Boulevard
San Mateo, CA 04404 USA
Phone: 800-632-2864 or 415-312-7197
Fax: 415-312-7195
Web: www.visigenic.com
Email: info@visigenic.com
Requirements: 10-14MB HDD, JDK1.1 SOlaris 2.5,
HP-UX, IBM AIX 4.1, SGI, Digital Windows NT
3.51/4.0/5.0 or Windows 95
Price: $1995 per Developer on Windows

$2995 per Developer on UNIX
(Excluding Naming and Event Services. Call for
Deployment)

73VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

74 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

idl2java provides IDL1.0 compliant IDL to
Java language binding. VBJ also contains a
fully implemented Interf a c e
R e p o s i t o ry(IR). The IR is an on-line data-
base of meta information (object interf a c e)
about ORB interfaces. It is essential for
Dynamic Invocation Interface(DII). In such
cases, the clients learn about an unknown
o b j e c t ’s interface at runtime. You need to
c reate IR using VBJ’s irep program. VBJ
also provides API for IR. You can populate
the IR by running idl2ir on the IDL file. VBJ
comes with a pro p r i e t a ry, distributed
object location and a dire c t o ry serv i c e
called an OSAgent (Smart Agent). Multiple
OSAgents running in the same network
locate each other and automatically part i-
tion the name spaces. Thus, it offers re p l i-
cation and load balancing. When client
application invokes the bind method on an
object or when object implementations
register their objects, it sends a UDP b ro a d-
cast and the first O Sagent to respond is
used. Once the OSAgent has been located,
point to point UDP connection is estab-
lished. If one O Sagent is failed, the other
OSAgent takes over the client and object
tasks. Thus, VBJ offers a fault tolerance.
S m a rt Agents can use VBJ’s Object Activa-
tion Daemon(OAD) to launch instances of a
s e rver process on demand. You can re g i s t e r
or unregister the implementations using
O A D ’s API or command-line utilities. VBJ
also provides an interface to O Sagent called
a Location Service. It is an extension of the
CORBA specification to provide general pur-
pose facilities for locating object instances.
The location services query the smart
agents about the instances. This inform a-
tion can be useful for load-balancing. This
s e rvice is available via the Agent API. The
API has two parts: one for query related and
another for registering and de-re g i s t e r i n g
the triggers. These triggers are, in fact, noti-
fications by which clients of the Location
S e rvice can be notified of the changes of the
availability of instances. Typically you can
use it as a callback mechanism.

Putting CORBA clients on Internet
The major market of Java is Intern e t

applications. There are two hurdles for mak-
ing CORBA applets available on the We b .
One is the security restrictions from the
b ro w s e r. Browsers restrict applets to con-
nect only to the domain from which they
have been downloaded. Another pro b l e m
comes from firewall restrictions. Fire w a l l s
deny the services, like IIOP, that are not
explicitly allowed. VBJ resolves these pro b-
lems with an approach called HTTP tunnel-
ing. In this mechanism, IIOP calls are
wrapped in an HTTP envelope for passing
t h rough the firewalls. Then it sends all the
requests to a daemon (Gatekeeper). The

daemon then forw a rds the request to the
host nominated in the object re f e re n c e .
V B J ’s Gatekeeper runs on a Web server and
enables the client program to make calls to
objects that do not reside on the Web serv-
er and to receive callbacks. One of the
advantages of this approach is that you can
still use the same firewall that you are cur-
rently using.

In CORBA, the objects are identified by
I n t e roperable Object References (IOR). IORs
a re generally clumsy. VBJ provides URL nam-
ing Serv i c e - I n t e rface which allows you to
associate a URL with an object’s IOR (Inter-
operable Object Reference). Unlike the gate-
k e e p e r, URL naming enables you to associ-
ate with a transient object’s IOR and connect
to it. It also skips smart agents for locating
the objects. Thus, you can locate the object
by URL like: http://myhost:15000/URLNam-
ing/myObject.ior

Advanced Features
1. Security: VBJ supports IIOP over Secure

Socket Layer (SSL) protocol. The VBJ’s
SSL pack provides privacy (thro u g h
e n c ryption), integrity (through check-
sum), and client-server authentication.

2. Scalability and Performance: VisiBroker
s u p p o rts scalability and perf o rm a n c e
through multi-threading. You can select
either thread per client session model or
thread pool model. Controlled Connec-
tion Management multiplexes and recy-
cles all requests from the same client.

3. I m p roved ORB API: The interc e p t o r
between, requests and enables develop-
ers to monitor or modify the request. You
can use smart stub API to improve the
performance by caching frequently used
and non-volatile results and values.

4. VisiBroker Manager: This is a GUI product
that is available separately but is very
useful. It provides Interface Repository
Browser, Location Service Browser, and
Implementation Repository Bro w s e r. It
also provides a performance monitor!

Comments on Compliance,
Performance, Interoperability
and Evaluation of CORBA

I did some testing related to perfor-
mance and fault tolerance but I was far from
calling it a benchmark. In fact I could not
find any proper bench marking suites for
the same. I came across some work in that
direction done by some research schol-
ars[1]. OMG does not certify the compli-
ance on its own. The Open Group(TOG)[2]
has announced VSOrb, test suites, to certi-
fy the functionality conformance with
CORBA specifications. DSTC’s[3] project,
CORBAnet, proves intero p e r a b i l i t y
between diff e rent ORBs including Vi s i-
genic’s one. Patricia Carando[4] gave some

tips for the selecting and evaluating the
ORBs. Visigenic satisfies almost all of them.

Some Expectations
Now that I like the core product, when I

want to make something meaningful out of
it, I need more and more services. Current-
ly, Visigenic provides the naming and event
services. Visigenic does not provide ser-
vices like Integrated Transaction Support,
connectivity to ODBMS/RDBMS, messaging
services or Trader services. Fortunately,
Visigenic is working on these and they have
released a plan for making them available. I
would also like to see more support for
tools for application development fro m
Visigenic, either directly or through third
parties. Currently Visigenic supports Java
and C++ language binding. Considering the
legacy systems, it would be great if Visi-
genic also could provide bindings for lan-
guages like smalltalk, Cobol, and Vi s u a l
Basic. Probably some third parties can take
up the work. Now, last but not least! The
main competitor to CORBA is a COM model
proposed by Microsoft. Visigenic currently
s u p p o rts client side support to
OLE/ActiveX. In the future, we may also
need a server side bridge to OLE.

Conclusion
VisiBroker 3.0 is a major breakthrough

for Visigenic. The new functionality galva-
nized the ORB. The scalable, fault tolerant
architecture of ORB, along with its ease in
using Java development support and GUI
based management tool, makes it a good
choice. The existing service, along with the
implementation plan of various other ser-
vices, makes the picture more promising.
Visigenic’s technology has been licensed by
Netscape, Oracle, Novell, Sybase, Borland
and others. This makes the technology
more suitable from a business perspective.

E d i t o r ’s Note: Vi s i b roker 3.0 also includes a
j a v a 2I I O P compiler and a java2Idle compiler.

Smalltalk is available now; the server-
side bridge to OLE is in development.

References
1.h t t p : / / w w w. c s . w u s t l . e d u / ~ s c h m i d t /

new.html#corba
2. h t t p : / / w w w. rd g . o p e n g ro u p . o rg / p u b l i c /

vsorb/rndatash.htm
3. http://www.corba.net
4.h t t p : / / m e m b e r s . a o l . c o m / c a r a n d o / O O P-

SLAWorkshop.html

About the Author
Khanderao Kand is a Principal Consultant at TekEdge
Corp., CA. As a consultant he has been working with
companies like Informix and Cisco. He can be
reached at kand@nestors-world.com.

kkand@cisco.com

75VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

76 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

What's all the fuss about Java? Like cof-
fee addicts, people are running about with
Java in their veins, hyped up in this new
euphoria known generically as ‘Java’.
Unfortunately, many, if not most, don’t real-
ly know or understand what it is all about,
but they are enjoying the high anyway. The
great majority seem to have garnered some
idea that Java re p resents the uprising
underdog, here to fight the battle against
the great evil empire of the all-pre s e n t
Microsoft juggernaut. So what, after all, is
this Java phenomena?

Having its origins at Sun Microsystems
in a language called Oak, Java has come to
represent an entire environment. Java tech-
nology now covers many domains, from a
well structured third generation language
(3GL) to an operating system environment
and distributed object Middleware infra-
structure.

The Java Phenomena
‘Java’ encompasses a number of funda-

mental technologies:
• Java Language – The Object-oriented

t h i rd generation Java language (Java
3GL).

• Java Applets – ‘Half-compiled’ architec-
ture-neutral bytecode objects one creates
with the Java language

• Java Scripting – A scripting environment
similar to Visual Basic Script

• Java Vi rtual Machine - Provides the
interpreter for the Bytecode Java Applets
and a protected operating environment
for Java applications

• JDBC and JSQL – Java Database Connec-
tivity, an ODBC lookalike which provides
database connectivity for Java applica-
tions and embedded SQL capabilities

• JNI – Java Native Interface, which pro-
vides an ‘Interface Definition Language’
allowing other non-Java languages to
expose Java-based interfaces

• Java RMI – The Java Distributed Object

Framework called Java Remote Method
Invocation (RMI)

• JavaBeans™ – The Java Object Assembly
environment called JavaBeans.

But what do these components really
deliver?

The Java Language: What,
Another 3GL?

Surely, in a day and age where any prod-
uct that needs to be successful requires the
word ‘visual’ imbedded somewhere in it, we
don’t need another third generation lan-
guage! One of the primary problems with
software development is the necessary evil
of programming. The concept of forcing a

domain expert (someone who really knows
what they are doing and want to accom-
plish) to get on their knees and bow down
to some programmer guru to try to get the
message across to them of what exactly
they want the computer to do is a little
backward. In other words, the problem with
3GL environments is that the programmer
is not the domain expert. This causes all
types of problems. Ever try relaying a sim-
ple message from individual to individual in

a party? It is amazing how easily the mes-
sage gets jumbled up somewhere along the
way. The same happens in software devel-
opment.

3GLs mandate a syntactically rich, or
should we infer poor, environment. That is,
you need to write a highly structured docu-
ment (program) where everything must be
just right. If you don’t put the brackets in
the right place and get all your verbs, syn-
onyms, language, etc. absolutely in order, it
won’t work.

The human brain is not naturally a syn-
tactical beast, we don’t naturally think in
terms of ‘structured language’. The human
mind thinks primarily in terms of pictures;
we are generally visual animals, living in a
visual world. So the marketing folk at most
of the computer companies have grasped
this basic concept and consequently, any
new product must have the word ‘visual’ in
it! It took some time to drum into the heads
of many computer people that a Graphical
User Interface (GUI) with Windows Icons
Mice and Pointers (WIMPs) was important.
In fact, you still manage to find a few indi-
viduals in the mainframe world and pro-
gramming community who still believe that
a command prompt is all you need. So, get-
ting back to our Java issue, what's the fuss;
who needs another 3GL?

Java is, quite simply, a better 3GL than
the other 3GLs like C, C++, SmallTalk, Ada,
Pascal and the like. Java gets rid of the
imbecilic concept of pointers and pointer
arithmetic which would leave you scratch-
ing your head as you tried to decipher what
someone was trying to do with a program.
Java also incorporated the novel concept of
garbage collection which, like other con-
cepts embedded in the Java programming
model, is wisely borrowed from other lan-
guages. Garbage collection removes the
p roblems of things like memory leaks.
Memory leaks? Sounds like a problem we
all have when trying to remember some-
one’s name. Well memory leaks are a bit like
that; users don’t always identify them on
PCs since they typically turn the PC off or
hit the all encompassing Ctl+Alt+Del which
effectively blows out all the memory and
lets you start afresh. Memory leaks typical-
ly crop up on servers and workstations
where the system is left running days and

W h a t ’s All The
Fuss About?

The Hype, The Use, The Fiction, The Facts

COMMENTARY

by Clive Boustred

“ Ob j e c t - o r i e n t a t i o n
a l l ows us

to separate
the interface

f rom the
i m p l e m e n t a t i o n .”

77VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

78 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

weeks, if not years, on end. It all comes
from those blasted pointers they gave us in
languages like C and C++, where program-
mers were responsible for allocating and
de-allocating memory segments. Program-
mers, like any normal individuals, tend to
forget to de-allocate the memory. The net
result is a system whose memory is filled
with stale data, effectively ‘leaking’ the
available memory live applications
can use. By the way, for those
of you still mired in the
world of C and C++ pro-
gramming, there are
g reat tools, such as
P u r i f y, which will
examine your code
and tell you when
you have a leaky
program.

This brings us to
another one of the
g reat advantages of
the Java 3GL, one of
s e c u r i t y. The old
pointer problem again
comes up as a key
instigator of pro b l e m s .
S m a rt hackers can use
pointers to capture the
i n f o rmation off specific
segments of memory that
other applications are
using, providing a dire c t
path to secure data. Ta k e
away the ability to use point-
ers and you get rid of many of
these pro b l e m s .

Pointers can, however, be useful to the
wizard who wants to play tricks and get
optimal performance out of some piece of
code. A bit like the guy who is really nifty
with his abacus or slide rule.

Other elements Java dumps that have
caused problems in the C++ world are
things like no operator overloading (Java
does have method overloading) and no
multiple inheritance (only single inheri-
tance). Also, Java has no templates, exten-
sive automatic coercions, etc. Java pro-
vides true arrays instead of having to use
pointers. It also enforces things such as sta-
tic typing, which is enforced by the compil-
er, producing clean code. While the dynam-
ic loading feature of Java eliminates any
explicit link phase, method lookup occurs
on-demand at run-time, which enables
applications to dynamically exploit the lat-
est revisions or replace objects on the fly
during runtime.

The other key element of Java, which
helps address the limitations of 3GLs and
brings us into the ‘visual’ world, is Jav-
aBeans, which we will get to short l y. There
is, however, one more aspect to the Java lan-

guage we must examine, that of bytecode.

Bytecode?
Sounds a bit like a sandwich. Well, byte-

code is also not new; it has also been
a round for some time in other languages.
Bytecode provides a halfway arc h i t e c t u re -

neutral state to fully-compiled
code. The key feature to byte-
code is that it does not forc e
any unique features of a spe-

cific hard w a re or operating
system platform. Java is an

i n t e r p reted environment but
the interpreter does not
have to start from scratch
in order to interpret the

p rogram. It interpre t s
the pre c o m p i l e d
a rc h i t e c t u re - n e u t r a l
Java bytecode. This
allows you to run the

exact same Java pro g r a m
on your PC, on all of your

d i ff e rent Unix systems and
even on your mainframe or

m i n i - c o m p u t e r.
The Java bytecode envi-

ronment is faster than
other interpreted lan-
guages like SmallTalk,
but slower than C or

C++. You can, howev-
e r, fully compile Java,

defeating the platform inde-
pendence but getting closer to C

and C++ performance.

Internet is Good
Another advantage of the Java language

environment is that it comes with an exten-
sive library of routines for TCP/IP protocols
like HTTP and FTP, which makes it handy
for Internet applications.

So, What's an Object?
Isn't my coffee mug an object? Well yes,

and herein lies the problem of explaining
the real advantages of object-orientation:
everything is an object. But in the comput-
er or programming world, the honest expla-
nation of an object lies in the following
statement: ‘Object-orientation allows us to
separate the interface from the implemen-
tation’.

So what does this mean? The separation
of the interface means that we take out the
interface part of the program, the instruc-
tions like start, stop, print, etc. and only
expose these to the outside world. The
actual implementation details of how we
internally structure and create this piece of
code is hidden. You need not know any
details of how the object is written; you
only need to know what interfaces are

made available and how you can use them.
It’s a bit like your car. You do not need to
know the details and workings of the com-
bustible engine to drive a car; all you need
to know is how to operate the interfaces:
the steering wheel, the ignition key, the
brakes, etc. Other programmers can then
take your object and exploit its interfaces
without having to know anything about the
internals of the program. Thus, objects pro-
vide the fundamental building block tech-
nology for assembling compre h e n s i v e
applications from object building blocks.

There are other aspects to object-orien-
tation that are important, such as inheri-
tance, polymorphism, encapsulation, class-
es, etc. But we will not get into the details
here. The important thing to recognize is
that Java provides us with an object orient-
ed environment which allows us to write
pieces of code, expose only the interfaces
to the code and let other people use the
object (program) without having to know
the gory details of the code itself. In the
Java world, we call these objects Java
Applets.

JavaScript
The other element to the Java environ-

ment is an object-based scripting language
that you can embed in HTML, the Hyper
Text Markup Language we use to describe
Web pages. This scripting language allows
us to make calls to initiate Java Applets and
provides us some other features to make
the HTML environment a little richer. Java
Script is based on the Java language and is
used to call Java applets from HTML and
‘glue’ the Java applets to each other. You
use it for scripting of events and actions
such as startups, exits and user mouse
clicks. It also provides constructs for data-
base connectivity. Of course, there are
many other scripting alternatives as well,
such as Visual Basic Script from Microsoft
and Dynamic HTML, etc.

The Java Virtual Machine
This is, again, an old concept borrowed

f rom the mainframe world. Mainframers
have been providing hosted Vi rt u a l
Machine environments for years. On main-
frames, we would host other ‘operating sys-
tems’ which provided ‘protected worlds’ in
which programs could operate without
affecting the whole system. So if you had
the concept of Ctl+Alt+Del on the main-
frame, it would not bring the whole system
to a grinding halt, but would only kill the
offending segment. It’s a little like the kill
command in Unix, or the new popup you
get on NT or Windows 95 which allows you
to get rid of badly behaved programs with-
out killing anything else. Except, like the
mainframe concept, the Java Vi rt u a l

79VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

80 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

machine provides a completely separate
world in which programs can execute – a
virtual ‘sandbox’ in which programs can
play without causing problems in the rest
of the house.

One of the primary responsibilities of the
Java VM is to interpret incoming bytecode
into the native machine language. This
allows the exact same Java Applet to be
s h a red across many diff e rent hard w a re
implementations without recompiling the
application. It also imposes a natural perf o r-
mance disadvantage when compared to fully
compiled environments where the object is
a l ready compiled into the binary code of the
specific platform. The first time you import
an object into the Java VM, it gets interpre t-
ed and is slow; however, future calls made to
that object while in memory can be nearly as
fast as C or C++ calls.

The Java Vi rtual Machine does take
away some key elements that are typically
considered fundamental to most computer
operating environments, particularly that
of an integral and permanent file system.
The Java VM has no persistent storage sys-
tem; only a cache is provided in which
objects are temporarily stored and then
cleared out when they are not referenced
regularly. Applications in the Java VM are
restricted from making local OS file system
I/O calls amongst other operating system
specific calls. While this provides some
security advantages, it is probably the most
fundamental problem with the Java VM in
that it requires you to reload all applica-
tions into the Java VM each time you start
up. Imagine installing your word processor,
spreadsheet and database each time you
turn on your computer!

H o w e v e r, the advantage of the Java VM
“sandbox effect” is that it allows you to
run applications in a protected enviro n-
ment. This is particularly important if you
a re downloading programs off the Intern e t
and you are not necessarily sure if they
contain viruses or if they will behave
p ro p e r l y.

JDBC
Java DataBase Connectivity, an ODBC

lookalike, provides database connectivity
for Java applications. JDBC itself is a low-
level interface which incorporates SQL
commands into the Java language. An API is
provided for database drivers which makes
the actual connection and translation to the
specific database. A JDBC to ODBC bridge
allows the exploitation of standard ODBC
drivers.

ODBC is really the market leader in this
segment by such a long margin that JDBC
does not really pose any threat to ODBC
itself. Microsoft, however, is interested in
moving ODBC to their new OLE DB environ-

ment. OLE DB provides a common data
access method to any OLE-compliant
object, whether it is a database, a word
processor, or a spreadsheet document.

JSQL
JSQL, like JDBC, provides database con-

nectivity to the Java language. JDBC, how-
ever, provides a more concise environment
than JSQL while it allows more efficient sta-
tic analysis and type checking.

Java Native Interface (JNI)
JNI provides a standard native program-

ming interface that allows the integration of
applications and libraries that are not writ-
ten in Java. A key aspect of JNI is that it pro-
vides binary compatibility across all Java
VM implementations on a specific platform.

JNI is independent of the implementation of
the underlying Java VM, enabling program-
mers to write applications or libraries in
different languages that should run on any
standard-compliant Java VM on that plat-
form.

JNI, of course, competes with
Microsoft’s MIDL (Microsoft Interface Defin-
ition Language) and CORBA IDL (Common
Object Request Broker Architecture Inter-
face Definition language). Both MIDL and
CORBA IDL provide language bindings,
which allow method invocations (instruc-
tions) to be passed from one object to
another object regardless of what program-
ming language the object is written in.

Java RMI (Remote Method
Invocation)

The Java Object Request Broker (ORB),
called Java RMI, provides a distributed
object framework for Java applications.
That is, it allows developers to create appli-
cations that run transparently over multi-
ple diff e rent computers, harnessing the
horsepower of multiple parallel computers
and exploiting the distributed demograph-
ics of networked systems.

Java RMI came out of Sun Microsystems
at a time when the rest of the industry,
including Sun but excepting Microsoft, had
p rovided full endorsed support for the
Object Management Group (OMG) Common
Object Request Broker Arc h i t e c t u re
(CORBA). Java RMI is not CORBA and is not
CORBA-compliant. Sun, an advocate of
Open Systems, essentially gave the rest of
the Open Systems industry an ‘ I’ll do it my
way’ and produced Java RMI, even though
Sun does have a CORBA-compliant ORB
called NEO (by the way, JOE is Sun's NEO
implementation that provides Java lan-
guage mapping). Sun's defense might be to
raise the question as to which successful
products in our market have been designed
by a committee. To fend off the under-
standable fury of the CORBA camp, Sun has
added the CORBA Internet Inter ORB Proto-
col (IIOP) support as a low level means (not
Java's standard) of communication from
Java RMI to other IIOP ORB implementa-
tions. Java RMI's standard Inter ORB proto-
col is the Java Remote Method Protocol
(JRMP).

Java RMI’s limitation is that it basically
s u p p o rts only the Java language. It is, how-
e v e r, relatively simple for a Java developer
to implement distributed Java applications
using Java RMI. It is much easier than imple-
menting distributed applications using a
CORBA ORB or Microsoft DCOM. For this
reason alone, Java RMI might offer a long-
t e rm solution to distributed computing.

We will not go into the details of how Java
RMI works here, but recommend that any
person who is interested should definitely
l e a rn more about ORBs as they will form the
foundation of future computing. The thre e
key ORB standards are OMG’s CORBA,
M i c ro s o f t ’s DCOM and Sun’s Java RMI.

JavaBeans
The Java object assembly environment,

JavaBeans, embodies the heart and soul of
f u t u re development environments. This
building block approach will enable domain
experts to develop advanced applications
with naturally cognizant development
tools. JavaBeans provides a standard way
for implementing development enviro n-
ments where components
(beans/objects/Applets) can be visually

Java provides us with
an object-oriented

environment which
allows us to write

pieces of code, expose
only the interfaces

to the code and
let other people
use the object

(program) without
having to know

the gory details of the
code itself.

81VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

82 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

integrated.
There is already an impressive array of

JavaBeans-compliant tools on the market,
such as Sybase’s PowerJ™ , Borland’s
JBuilder™, IBM’s Visual Age™ for Java,
SunSoft’s Java Workshop™ and Symantec’s
Visual Café, amongst others.

If we were to rate any of the Java ele-
ments in order of importance, JavaBeans
comes out on top. Providing a standard
Computer Aided Software Engineering
(CASE) environment with standard underly-
ing communications infrastru c t u re, the
Java RMI ORB. It is what the industry des-
perately needs to enter into the next gener-
ation of computer technologies, where
domain experts will at last be able to create
the software they need out of standard
building blocks. An interesting aspect to
consider is that the next CORBA interface
standard, CORBA 3.0, may well embrace the
JavaBeans model.

The Java Coup
Now that we know a little of what Java is

all about, we can start to understand the
excitement. But what are the underlying
c u rrents? Why, for example, is Sun
Microsystems trying to sue Microsoft Cor-
poration? What are the ‘war room’ strate-
gies that are driving the computer systems
juggernauts?

No one denies the fact that Microsoft
has captured the heart of the industry, seri-
ously threatening companies like IBM and
Sun. Can the Java phenomenon undermine
the Microsoft phenomenon?

Windows controls the desktop market
and NT is rapidly making inroads into con-
trolling the server market. How can any
vendor stop this massive landslide?

B rowsers were the first to recently raise a
challenge to Micro s o f t ’s desktop dominance.
They even had Microsoft worried for a while.
The Internet explosion caught most of the
vendors unaware, including Microsoft. When
M a rc Anderson’s Mosaic brought a new
u s e r-friendly ‘desktop’ interface to the
l a rgest network in the world, the Intern e t
and browsers took off. The browsers were
definitely not from Microsoft, providing a
significant new alternative desktop interf a c e
to Microsoft Wi n d o w s .

Recognizing the serious threat browsers
posed to their control of the desktop, on
December 7th 1995, Microsoft announced a
massive reorganization and a host of new
products, all focused entirely around the
I n t e rnet. Microsoft spearheaded these
efforts with a free Microsoft-based browser,
the Internet Explorer. They subsequently
came up with an even smarter strategy to
combat the browser threat – by simply
incorporating browser technology into the
heart of Windows itself, Microsoft will make

the need for a separate browser mute.
But Java goes beyond the browser. Java

p rovides its own Vi rtual Machine (VM)
environment, an operating system in itself.
The Java VM can run independent of
Microsoft’s Windows, providing an alterna-
tive ‘platform’ to Windows. It is this alter-
native that Microsoft’s competitors are try-
ing so desperately to protect and propa-
gate. And this is where Microsoft is so eager
to come up with a strategy to divert any
massive migration to the Java VM.

The Java VM, however, was designed
primarily around the concept of providing a
protected environment in which you can
run potentially suspect code on your pri-
mary operating system without affecting
the whole system. This is why the Java VM

limits access to file system I/O and is also
the very reason why the Java VM in its cur-
rent state will probably never manage to
usurp Microsoft Windows. It is necessary to
download an application over the network
each time you restart. As we mentioned
before, imagine having to re-install your
word processor and spreadsheet each time
you turned on your computer. The other
problem is that when compared to stan-
d a rd Windows applications, bytecode is
i n h e rently slower than complied code,
handicapping true Java applications. You
can, however, fully compile Java code to a
specific machine’s binary environment and
obtain nearly the same performance as C or
C++. Ho w e v e r, this eliminates Java’s
machine independence.

M i c ro s o f t ’s current strategy to dilute
any Java VM threat is to expose Java
Applets as full COM (Component Object
Model) objects. Turning Java objects into
COM objects (the same thing as ActiveX
objects), makes Java objects the same as any
other language’s objects in the Wi n d o w s
e n v i ronment. Microsoft is thus ‘opening up’

the Java VM to be an integral part of the Wi n-
dows Operating System environment. Devel-
opers are consequently likely to exploit
M i c rosoft Windows-specific features even
when developing Java applications, part i c u-
larly by exploiting the ability to utilize local
persistent storage on Windows and thus
e ffectively locking the application to the Wi n-
dows platform. The Java VM then becomes a
mute point, since it is inherently incorporat-
ed in the Windows operating system.

Microsoft is obviously not playing along
with Sun’s Java strategy and ‘licensing
model’ and this is why Sun is jumping up
and down frantically because Micro s o f t
won’t play properly. To be perfectly honest,
why should Microsoft have to play along
with Sun? Are vendors not free to innovate
as they choose? If Sun wants to compete
with Microsoft, they have to do it in the
‘Open’. In the Open Systems world, the ven-
dor with the most cost-effective product
(and the best marketing) wins.

So far, Microsoft has managed to dilute
any attempts to dethrone their dominance
on the desktop. Micro s o f t ’s strategy re f l e c t s
that of a wise commander who has been
t h rough, and won, many battles. What the
other vendors seem to be unaware of, in
their frantic attempt to unseat Micro s o f t ’s
dominance of the desktop, is that while they
a re deploying all their forces against the
desktop, probably futilely, Microsoft has
a l ready entered the back door of the ivory
tower and is taking over their server market.

However, the real battle lies in the adap-
tation of vendors’ distributed object Inter-
face Definition Languages and underlying
ORB infrastructure DCOM vs. CORBA vs.
Java RMI. In particular, the features and
functionality of CASE tools that allow appli-
cations to be built around any of the dis-
tributed environments will determine the
industry direction. Whoever manages to
control the hearts and minds of developers
and manages to get developers to build
applications around their distributed
object model wins!

About the Author
Clive Boustred is the Chief Technical Strategist for
Advanced Technical Strategy,
Inc.(www.strategize.com). He has held senior posi-
tions and consulting engagements with numerous cor-
porations such as Microsoft, Sun Microsystems, Gen-
eral Electric and Teknekron, where he was involved
in the development of Corporate Computerization
Strategies. Clive specializes in Distributed Systems,
CASE and Networking and is responsible for provid-
ing the vision for many highly advanced systems and
some of the largest Distributed Object implementa-
tions to date. He can be reached at clive@strate-
gize.com

The Java VM can
run independent

of Microsoft’s
Windows,

providing an
alternative

‘platform’ to
Windows.

clive@strategize.com

83VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Java
World

84 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

New H
Ad Sp

85VOLUME: 2 ISSUE: 9 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

 House
Spread

86 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

The Web is full of re s o u rces for Java.
T h e re are applets, code samples and FA Q s
e v e ry w h e re and several free tutorials. But
when it comes to getting a simple ques-
tion answered, there are not many
o p t i o n s :
• Usenet: You can always post your ques-

tions on the Usenet news group, which
now boasts 13 subgroups under the
comp.lang.java main group. However, the
‘free-for-all’ kind of Usenet culture can
overwhelm some people, especially if you
are a newbie.

• Mailing Lists: There are also some mail-
ing lists to which you can subscribe and
get the messages in the discussion sent
to you in the form of e-mail. This is great,
I guess, if you have the ability to correlate
the questions and answers into some
kind of a thread!

• Java Developer Connection (JDC): Sun
Microsystems Inc. provides a variety of
resources for developers at JDC, which
includes a Developer Forum. But this is a
scheduled chat type of forum, rather than
a threaded discussion forum.

• Mentor: You can pick up the phone and
call your good friend!

Now, SYS-CON Interactive offers the JDJ

Forum, where all you need is a standard
browser to get access to many dream fea-
tures in a discussion forum:
• Read the entire thread in one page (not

one message at a time)
• Search the topics and message bodies
• Spell check your messages before post-

ing.
• …and many more

The URL of the J D J F o rum is:
http://www.sys-con.com/java/board.htm

Access is free; however, we do ask you
to register initially. You are also welcome
to come in as a guest, without registra-

tion, to view the forum. And we have
plans for a Team JDJ to ensure that you
get a speedy response to all of your ques-
tions on Java.

About the Author
Ashok Ramachandran is a Consulting Manager with
Noblestar Systems Corporation, Falls Church, VA.
Ashok is the SYSOP (Moderator) of the Forums at
SYS-CON Interactive. He spends his free time(!)
maintaining his Java/PB Newbie home page
(http://ashok.pair.com/).

w w w. J a v a D e v e l o p e r s J o u rn a l . c o m

Welcome to the
JDJ FORUM

JDJ FORUM UPDATE

by Ashok Ramachandran

http://ashok.pair.com/

Figure 1: On the JDJ Forum, you can search the topics as well as message bodies.

Figure 2: The search returns a clickable list of links

87VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

88 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

Java Developer’s Journal Signs
with Curtis Circulation Company
(Pearl River, NY) - SYS-CON Publications,
Inc., publisher of Java Developer’s Jour -
n a l, has signed a distribution agre e m e n t
with Curtis Circulation Company for the
worldwide distribution of their best selling
monthly title, Java Developer’s Journ a l.

Besides Java Developer’s Journ a l, SYS-
CON publishes the well-known P o w e r -
Builder Developer’s Journ a l. In addition,
SYS-CON will be launching VRML Develop -
e r ’s Journ a l in Febru a ry ’98 at the VRML ’98
C o n f e rence in Montere y, CA, S i l v e r S t re a m
D e v e l o p e r ’s Journ a l in March ’98 and a new
c o n s u m e r-oriented title, CyberGamer Mag -
a z i n e, devoted to online Internet games, in
April ’98.

Java Developer’s Journ a l has held the
number one spot in newsstand sales since
its pre m i e re issue almost three years ago,
a c c o rding to International Periodical Distrib-
utors, JDJ’s largest U.S. and Canadian dis-
t r i b u t o r.

C u rtis Circulation Company, a division of
Hachette Filipacchi Group, is the largest dis-
tributor of magazines in the world. For more
i n f o rmation on this agreement, please con-
tact lhoffer@sys-con.com

Cloudscape Announces First
Embeddable Java™ Database
(Oakland, CA) - Cloudscape™, Inc. has
announced that JBMS™, the first lightweight
Java-based relational data management sys-
tem, has been delivered to beta customers
within the US. JBMS enables “smart applica-
tions” that are highly productive yet small
enough to be deployed via the Internet and
corporate intranet/extranet to run on plat-
f o rms from laptops to the slimmest
of clients, such as personal digi-
tal assistants (PDAs) or the
network computer and other
skeletal computing platform s .

S e rving as the smart
embedded data management
engine for distributed applica-
tions such as e-commerce, per-
sonal information managers and
Push technology, JBMS offers an
embeddable Java data manager to develop-
ers building Java applications. Because it is
based on Java, it can be extended with Java
class libraries to handle new kinds of data
within a SQL framework.

JBMS is expected to be generally avail-
able by the first quarter of 1998. Pricing is
$195 per development or deployment seat.

Cloudscape expects to provide a free down-
loadable evaluation kit at that time. For
m o re information, visit their Web site at
w w w.cloudscape.com, e-mail info@cloud-
scape.com or call 510 873-0900.

Perspective JavaChart™ Makes
Java Charting Easy, Powerf u l
(Los Angeles, CA) - Three D Graphics has
i n t roduced a charting program that off e r s
Java developers a 100% Pu re Java
Class Library, a JavaBean™ and a
fully pre - c o n f i g u red Java 1.1
applet for creating pro f e s s i o n a l
c h a rts directly in a Web page. It
has a full set of pro p e rties, meth-
ods and user interface tools for Java
developers who want to create data-
driven graphics, and works in any
Java-compatible development enviro n-
ment, browser or operating system.

The program is a complete Java 1.1
applet. This product also is designed to sup-
p o rt the latest browser technology, includ-
ing Netscape™ 4.0 and Internet Explore r ™
4 . 0 .

Perspective JavaChart has a licensing fee
of $995 and the source code is provided for
an additional $995 per developer. This price
includes maintenance and updates for a
period of six months. For more inform a t i o n
visit Three D Graphics’ Web site at
w w w. t h reedgraphics.com or you can con-
tact them by by phone at 800 913-0008 or by
fax at 310 788-8975.

Sun Service Solutions for
Java in the Enterprise
(Palo Alto, CA) - Sun Microsystems Inc. has

announced new services to help enter-
prises create Java™-powered solu-

tions to realize business objec-
tives. Sun’s Java service solutions
allow companies to investigate,
evaluate, architect, pilot and
implement/manage Java com-
puting in safe, distributed and
u s e r-friendly enviro n m e n t s
a round the world.

Sun Java Design Centers pro v i d e
technical consulting services to help MIS
managers and developers, Independent Soft-
w a re Vendors and system integrators devel-
op Java expertise for creating a competitive
business advantage. SunClient™ Support
delivers cost-effective services for JavaSta-
tion™ network computers.

For more information on Sun’s serv i c e s ,
see their Web site at www. s u n . c o m / s e rv i c e .

Inquiries about pricing and availability
should be directed to local Sun locations.

Visigenic will Resell Vi s u a l
E d g e ’s COM/CORBA
(C u p e rtino, Calif.) - Visigenic Software, Inc.
and Visual Edge Software, Ltd. have
announced that Visigenic will resell the
COM/CORBA Interworking Product, which
allows Vi s i g e n i c ’s CORBA ORB to transpar-

ently and bi-directionally communi-
cate with ActiveX/COM objects.

For more information about this
p roduct, visit the Visual Edge We b

site at: www.visualedge.com or
else call 408 973-7823 or fax 408
973-7250.

Black & White Software®

I n t roduces OrbixBuilder™
(Campbell, Calif) - Black & White Software
has introduced its OrbixBuilder family of
graphical CORBA development pro d u c t s .
The software incorporates visual drag-and-
d rop techniques and automatic generation
of application code that is CORBA IIOP-
e n a b l e d .

For Java™-based development on Wi n-
dows® platforms, OrbixBuilder installs itself
as an integrated extension to Symantec Vi s u-
al Cafe´™, thus extending graphical Java
development capabilities to CORBA-based
distributed products. The result is an infra-
s t ru t u re for building or migrating applica-
tions that function across the In t e rnet and
corporate In t r a n e t s .

Quantity-one pricing is $2000 and more
i n f o rmation is available at the Black & White
Web site: www.blackwhite.com, or you may
call 408 369-7400 or fax 408 369-7406. Their e-
mail address is: info@blackwhite.com

P ro g ress Software Corporation
I n t roduces Apptivity 2.0
(Scottsdale, Ariz.) - Pro g ress Software Corp.
has released Apptivity 2.0, a tool for building
business-critical database applications in
Java™. It incorporates a number of new fea-
t u res including a suite of new wizards, an
enhanced visual user interface, a unique dis-
tributed debugger and CORBA integration.

Apptivity Developer is priced at $1995
and includes a 5-user Apptivity Application
S e rver for deploying pilot projects. Apptivity
S e rver pricing begins at $5000 for a 20-user
s e rv e r. Apptivity Server supports any Java
s e rver platform, and Apptivity applications
can be deployed to any 1.02 or 1.1 JDK plat-
f o rm, including Netscape Navigator 3.x/4.x

J AVA NEWS

89VOLUME: 2 ISSUE: 12 •h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

and Microsoft Internet Explorer 3.x. Apptivi-
ty is compliant with any JDBC- or ODBC-
compliant data sourc e .

For more information, visit Pro g ress Soft-
w a re ’s Web site at www. p ro g re s s . c o m ,
phone 617 280-4000 or fax 617 280-4095.

N e t F a c t o ry ’s NetCharts Selected
by Oracle Corporation
(Silver Spring, Maryland) - NetFactory Inc.
has announced that Oracle Corporation will
be incorporating NetCharts technology into
its new Oracle Enterprise Manager V2 We b -
enabled products for Oracle perf o rm a n c e
monitoring and capacity planning.
N e t C h a rts is an HTML-configurable, 100%
P u re Java™-based, business charting pack-
age available for any Java-enabled platform
including PCs, Unix and network computers.

For more information visit NetFa c t o ry ’s
Web site at: www. n e t c h a rts.com, e-mail:
i n f o @ n e t c h a rts.com or call 301 625-5600.

InstallShield® Java™ Edition
Deploys Cro s s - P l a t f o rm Apps
(S c h a u m b u rg, IL) - InstallShield Software
Corp. has announced the availability of
InstallShield Java Edition installation devel-
opment version 1.0. It includes new feature s
that enable developers to create true cro s s -
p l a t f o rm installations, providing a consis-
tent experience for users of all support e d
operating systems and Java Vi rt u a l
Machines (VM) version 1.0.2 and higher.

By building a single Java package file,
InstallShield Java Edition allows developers
to create and maintain only one installation
that will run on all supported VMs.

InstallShield Java Edition is available at
an MSRP of $495 and can be ord e red dire c t-
ly from the InstallShield Web page at:
w w w. i n s t a l l s h i e l d . c o m / i s o rd e r. For more
i n f o rmation about this product, call 800 374-
4353, fax 847 240-9120 or e-mail: info@install-
shield.com.

P a s s p o rt Corporation Incorpo-
rates TI B C O’s Push Te c h n o l o g y
(Paramus, NJ) - Passport Corporation has
announced that the company’s application
development environment, Pa s s p o rt IntR-
prise™, now offers support for TIBCO’s suite
of publish/subscribe and multicast tech-
n o l o g i e s .

P a s s p o rt IntRprise is a compre h e n s i v e
application development environment for
building thin client applications in Intern e t
and enterprise environments. It combines a
h e t e rogeneous arc h i t e c t u re with open mid-

d l e w a re and database access, application
fault tolerance and scalability. Passport IntR-
prise is available for Windows 3.1, Wi n d o w s
N T, Windows 95, Open/VMS and UNIX. Addi-
t i o n a l l y, Passport IntRprise applications can
be deployed on all Java-supported plat-
f o rms, including network computers. Pricing
s t a rts at $8995.

For more information on Passport and its
p roducts, check the company’s Web site at:
w w w. p a s s p o rt.com or call 1 800 926-6736.

ObjectSpace Partners to
Accelerate Agent Researc h
(Austin, Texas) - ObjectSpace, Inc.
has been awarded the $2.5M NIST
Aw a rd to develop applications of
“agent software technology”
for semiconductor manufac-
turing. The resulting systems
will be based on the Object-
Space Voyager™ Core Te c h-
nology (Voyager), an
advanced 100% Ja v a ™
object request broker (ORB),
and will be validated in AMD’s
latest generation micro p ro c e s-
sor factory.

The ObjectSpace/AMD pro j e c t
will explore ways to develop and
deploy a variety of goal-directed software
agents that mimic and improve the function-
ing of real-world agents, such as factory
workers, material, equipment and pro c e s s-
e s .

Voyager is a Java-centric distributed
computing platform that includes seamless
s u p p o rt for mobile objects and autonomous
objects. Voyager contains an easy-to-use set
of features found in other ORBs and agent
p l a t f o rms, including CORBA, RMI, Aglets and
O d y s s e y. Vo y a g e r ’s design is based on the
Java object model.

Additional information on Voyager can be
found at ObjectSpace’s Web site, www. o b j e c t-
space.com, or call 972 726-4100.

SuperCede, Inc. Announces
Complete Support for JDK 1.1
(Washington, D.C.) - SuperCede, Inc., a lead-
ing developer of interactive software devel-
opment tools for Java™ applications, has
announced SuperCede 2.0, the latest version
of the highly-acclaimed SuperCede visual
development environment. This second gen-
eration of the SuperCede® product family
o ffers many new features, including com-
plete support for JDK 1.1 and Ja v aBe a n s .

For additional information visit

S u p e r C e d e ’s Web site at
w w w. s u p e rcede.com, call 425 462-7242 or fax
425 637-5886.

G E O ’s Emblaze We b C h a rg e r ™
C reates Rapid Web Site Graphics
(Woodland Hills, CA) - GEO Publishing, an
I n t e rnet software publisher, has re l e a s e d
Emblaze We b C h a rger™, an Internet image
c o m p resson software. It solves the challenge
of creating attractive Web sites without sub-
jecting an audience to the delays associated
with downloading and viewing image-inten-

sive Web pages.
Emblaze We b C h a rger™ gives We b

developers the ability to com-
p ress high-quality 16 or 24-bit

full-color graphic images up
to 400% more than JPEG,
resulting in rapid loading
Web site graphics since the
small files can be quickly
transmitted and viewed.
Images converted with the
s o f t w a re are completely

JPEG-compatible.
Emblaze We b C h a rger is

available forWindows 95 and
Macintosh 7.1+ and is available at

major software retailers. The stre e t
price is expected to be $99.95. Users may
also order directly from GEO Publishing at
800 576-7751 or at their Web site at
w w w.emblaze.com.

Global Stock Games Using Open
M a r k e t ’s Te c h n o l o g y
(Cambridge, MA) - Open Market, a leading
p rovider of Internet commerce software, has
licensed its software, Transact™, to a lead-
ing Internet entertainment company, Global
Stock Games. The new service is designed to
educate as well as entertain customers as
they use their skills to predict the rise and
fall of selected shares on several worldwide
stock markets. It can be found at
w w w. s t o c k g a m e s . c o m .

Swiss-based Global Stock Games and its
p a rent company, GMG (Intl.) Ltd. will rely on
Open Market’s Transact to manage players’
payments and offer credits for correctly pre-
dicting share movements. Customers will be
able to participate in various online games
based on developments selecting stock in 12
d i ff e rent markets, using Transact to manage
the entire order management pro c e s s .

For more information on Open Market,
please call 617 949-7000 or see their Web site
at www.openmarket.com.

J AVA NEWS

90 • VOLUME: 2 ISSUE: 12 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

“Look, if I drink any more Espresso, my
head will explode!”

I am back at Peet’s Coffee discussing job
s e a rch strategies with Ying and Yang, the nick-
names I have given to my two former summer
i n t e rns. They are out in the real world now, and
have decided to split from their current jobs at
big, boring companies. Both are interv i e w i n g
at Internet startups in Silicon Va l l e y. For some
strange reason, they are meeting me again for
additional job search advice.

“So why do you guys drink this? It tastes
like motor oil!”

Yang fires back, “How would you know, Joe?
That cheap gin you drink killed your taste buds
years ago.” Actually, it wasn’t gin, but I didn’t
want to talk about my years of going to Grate-
ful Dead concert s .

Ying chimes in, “So Joe, we both have gone
p retty far down the interview road at these
s t a rtups. No illusions - will be 70 hour weeks
for a while. We took your advice about stock
options, and we are negotiating some pro t e c-
tion if they get taken out. We want to get some
of our stock vested!”

“Good move!” I shout. I bet no one else at
those companies has thought of what happens
to their stock options if the company gets
bought out. They could be in for a rude shock.

“So, who are you interviewing with?” I ask in
my ‘leading question’ voice.

“The engineering managers, who else?”
replies Yang. “Sounds like a lead in to another
‘ Wisdom of Joe’ lecture . ”

“No, just curious...but how can you tell if
these companies are going to make it by talking
just to the engineering managers?” I ask.

“So far they have only had us interview the
engineering guys, so what’s the big deal?”
snaps Ya n g .

I start in on another monologue that even
John Galt would be proud of. “You are going to
be working your butts off for the next two
years. Make it count. If the job looks good, talk
to several other departments, especially in
marketing and sales channels.”

“Why?” Yang asks. “What do I ask a market-
ing guy? Why would he or she want to inter-
view me?

“Look, marketing is simple in theory,
e x t remely tough in practice; sort of like using
Java in the real world. If the marketing and
sales guys know what they are doing, then all
your 70 hour weeks will give you a shot at that
‘big win’. If they are clowns, then the tightest
code you can write will be for nothing. Look
what happened to Apple toward the end – the
inability to market their products against Wi n-
Tel negated the eff o rts of a lot of good engi-
neers. So ask a couple of questions about mar-
keting strategies. Lots of marketing guys in
I n t e rnet startups came from big computer

companies where they really didn’t do any-
thing except show up in a suit and re g u rg i t a t e
the company line.”

“So how did those guys end up at the hot
s t a rtups?” asks Yang, who has come down fro m
his espresso high long enough to look worr i e d .

“They had good resumes and re f e re n c e s
that made them sound great. The fact that the
re f e rences themselves were not that great was
never checked out. Look, I can ask you in an
i n t e rview to hack up some Java code and know
in a few minutes if you are good. Marketing
guys can scam their way for quite a while,
sometimes for a whole care e r. So, how do you
know if a marketing guy knows what he is talk-
ing about? Meet the Director of Marketing or
the senior product guy associated with your
p roduct. Ask him some basic stuff. Who is the
competition now and who do they think it will
be in two years? Why is his product better than
the other guy’s? What keeps him awake at night
w o rrying? And, the most important question,
the elevator speech. If he had only 30 seconds,
like in an elevator, explain what his product is,
what it does and why it is better than the com-
petition. Any marketing guy that will make a
s t a rtup happen has already developed an ele-
vator speech. They need it when they have a
chance encounter with a potential customer,
investor or re p o rt e r. If the marketing guy does-
n ’t answer those questions in a way that you
a re comfortable with, then there are pro b l e m s
a h e a d . ”

“So,” says Ying, “You are asking us to inter-
view them as hard as they interview us.”

“ You know, most young programmers in Sil-
icon Valley know more about the San Francisco
49ers that they watch for 3 hours a week, than
they know about the startup they will be
putting in 12 hours a day for. And one last tip,
meet the president of the company. Ask him or
her about what they see the company doing. Is
it an IPO candidate or will it be taken out by
M i c rosoft or Cisco? Ask the toughest questions
you can think of, like what was their worst busi-
ness failure and what did they learn from it? If
they can’t handle an engineer asking those
questions, then there are bigger pro b l e m s .
Move on.”

“So Joe, you seem like a smart guy, but you
a re n ’t at a startup that will make you rich!” fire s
Yang in his normal sarcastic tone.

“ Well, that reminds me of THE most impor-
tant factor in hitting the Big One at a start u p :
blind luck. Even with the best team, it’s a roll of
the dice.”

“ G reat,” says Ying. “Maybe I should just stay
at this boring company I’m at and do the 9 to 5
t h i n g . ”

“ You won’t,” I re p l y. “The brass ring is out
t h e re, go for it. And if the dice roll your way, at
least give me a ride in the Ferrari!”

“The Brass Ring”

by Joe S. Valley

Joe S. Valley is a scarred veteran of the Silicon Valley
wars. It was either writing this column or heading
back into therapy. His company can't afford mental
health care coverage anymore, so writing is the only
option. There are a million stories in the Valley and
Joe knows lots of them. Got a good story? E-mail him
at Joe@sys-con.com

THE GRIND

“Well, that reminds

me of THE most

imp ortant factor

in hitting the Big

One at a startup :

blind luck.”

Joe@sys-con.com

h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m 91VOLUME:1 ISSUE: 5 •

Microsoft
Ad

92 h t t p://w ww.J a v a D e v e l o p e r s J o u rn a l . c o m

KL Group
Full Page Ad

• VOLUME: 2 ISSUE: 12

